61 research outputs found

    About the Using of Polarization Methods in Investigating the Polarization Sensitive Nanosystems

    Get PDF
    The paper shows the possibilities of defining the degree of correlation of mutually orthogonal superposing circularly-polarized and linearly-polarized plane waves. The proposed results widen possibilities of metrological use the methods of spatial polarization modulation for investigating the properties of polarization sensitive systems and nanoobjects

    Geometric phase for investigation of nanostructures in approaches of polarization-sensitive optical coherence tomography

    Get PDF
    Proposed paper presents the latest results in the framework of polarization-sensitive low-coherence interferometry related to new approaches for using the geometric phase to reproduce the polarization structure of a biological transparent anisotropic micro (nano) object. The polarization parameters of an anisotropic object are measured in real time on the basis of a modified Mach-Zehnder interferometer. The advantage of using the geometric phase is the diagnostic of polarization anisotropic surface (subsurface) nanosized layers in a non-contact, non-invasive manner

    A Forest Fire Detection System

    No full text

    Synthesis of barium titanate film on TiN-coated silicon by low temperature hydrothermal and galvanic couple methods

    No full text
    本研究主要採用以往文獻中未曾使用之氮化鈦(TiN)膜/Si來當基材,利用低溫水熱法直接浸泡及化學電池作用方式來成長鈦酸鋇薄膜,反應溶液為0.5 M醋酸鋇(Ba(CH3COO)2‧H2O)及2 M氫氧化鈉(NaOH)之電解液,探討在控制溶液溫度及反應時間之條件對鈦酸鋇膜成長之影響。 XRD結晶分析結果顯示,以低溫水熱及化學電池技術均可沿TiN/Si之優選方向(111)與(200)生成具高優選方向(111)與(200)之立方相鈦酸鋇薄膜。另外,以化學電池法亦可於Ti(002)/Si基材上製備出具(211)之優選方向之立方相鈦酸鋇薄膜。 TiN/Si於水熱法直接浸泡下,80℃浸泡5分鐘或60℃浸泡2小時,則開始產生零散分佈之立方相之鈦酸鋇顆粒,而於80℃浸泡2小時以上,則可形成鈦酸鋇膜。在化學電池作用於80℃反應1分鐘時及50℃反應2小時下,即有鈦酸鋇產生,且於80℃反應1小時以上已成長為一緻密之鈦酸鋇膜,故在相同條件下,以化學電池方式成長鈦酸鋇膜之速率明顯比水熱浸泡法要來的快,其生成厚度相差約20~26%。另於化學電池作用上,TiN/Si成長鈦酸鋇之速率亦明顯較Ti/Si快,成長厚度亦較厚。 此外,本研究製備鈦酸鋇方式於水熱法直接浸泡及化學電池作用製備鈦酸鋇薄膜,皆可有效避免以往文獻中以水熱或電化學法成長鈦酸鋇時,產生碳酸鋇污染之問題,此對未來工業化應用亦有相當之幫助。The objective of this research is to synthesize BaTiO3 on titanium nitride-coated Si using novel low temperature hydrothermal and galvanic couple techniques. A mixed solution of 0.5 M barium acetate (Ba(CH3COO)2H2O) and 2 M sodium hydroxide (NaOH) was employed as electrolyte to investigate influences of temperatures of the electrolyte and the reaction time on the growth BaTiO3 films. XRD results reveal that both low temperature hydrothermal and galvanic couple techniques could be used to successfully prepare cubic BaTiO3 films with highly preferred orientation, which depended on the crystallized orientation of TiN/Si substrate. Furthermore, the BaTiO3 films with (211) preferred orientation can be observed on the Ti(002)/Si substrate by galvanic couple techniques. A finely dispersed cubic phase BaTiO3 particles could be found after hydrothermal treatment of TiN/Si substrate at 80C for 5 minutes or at 60C for 2 hours, and the particles started to films at 80C for more then 2 hours. However, such the cubic BaTiO3 particles could be observed on TiN/Si substrate at 80C for only 1 minute by using the galvanic couple technique and continuous dense films at was formed 80C for 1 hour. Therefore, the growth rate of BaTiO3 on TiN/Si substrate by the galvanic couple technique is faster than that by the low temperature hydrothermal technique. The thickness difference of the BaTiO3 films between two methods was approximately 20-26 %. Furthermore, the growth rate BaTiO3 over layer on TiN/Si substrates is also faster and than that on Ti/Si substrate using the galvanic couple technique. Moreover, above mentioned techniques for preparing BaTiO3 could avoid the contamination of BaCO3, which is often reported in literatures in synthesizing BaTiO3. This could make mass production feasible in the future.誌謝………………………………………………………………i 摘要………………………………………………………………ii Abstract………………………………………………………iv 目次………………………………………………………………………v 表目次………………………………………………………………viii 圖目次………………………………………………………ix 第一章 緒論……………………………………………………………1 1.1 前言……………………………………………………………1 1.2 研究動機………………………………………………………2 1.3 研究目的………………………………………………………5 第二章 文獻回顧與理論背景………………………………………6 2.1 水熱法成長鈦酸鋇膜之文獻回顧……………………………6 2.2 化學電池(galvanic/voltaic couple)作用之原理………………18 第三章 實驗方法………….…………………………………20 3.1 基材準備……………………………………………………20 3.2 浸泡液(電解液)之製備………………………………………20 3.3 實驗裝置……………………………………………………23 3.4 低溫水熱法與化學電池作用製備鈦酸鋇之方法…………26 3.5 分析儀器………………………………………………………27 3.5.1 X光繞射分析儀(XRD)…………………………………27 3.5.2場發射式電子顯微鏡(FE-SEM)………………………27 第四章 結果與討論…………………………………………………28 4.1 TiN/Si與對照組Ti/Si、塊材Ti等基材之分析………………28 4.1.1基材之晶體結構分析…………………………………28 4.1.2基材之微結構與厚度分析………………………………30 4.2 以直接浸泡方式於TiN/Si製備鈦酸鋇………………………34 4.2.1鈦酸鋇膜之晶體結構分析………………………………34 4.2.2鈦酸鋇膜之微結構及厚度分析…………………………40 4.2.3綜合分析…….……………………………………………63 4.3 以化學電池作用於TiN/Si製備鈦酸鋇………………………65 4.3.1鈦酸鋇膜之晶體結構及成分分析………………………65 4.3.2鈦酸鋇膜之微結構及厚度分析…………………………71 4.3.3綜合分析…….……………………………………………80 4.4 綜合討論………………………………………………………86 4.4.1 於TiN/Si上以低溫水熱法與化學電池作用成長鈦酸鋇之比較...................................................86 4.4.2 TiN/Si與對照組(Ti/Si及塊材Ti)成長鈦酸鋇之比較.....91 4.4.3 高方向性鈦酸鋇之製程..................................................111 4.4.4 無碳酸鋇污染物之製程..................................................119 第五章 結論…………………………………………………………123 參考文獻……………………………………………………………12

    Controlling and manipulation of red blood cells by evanescent waves

    Full text link

    CHANGES IN THE STRUCTURAL AND FUNCTIONAL ORGANIZATION OF THE HEART UNDER THE INFLUENCE OF SYSTEMATIC PHYSICAL LOADS

    No full text
    Echocardiographic examination of 28 untrained and 11 trained young men aged 18-20 was performed. It has been shown that long-term systematic muscular work of significant volume and power contributes to the formation of a specific transformation of structures and functions of the heart with a high degree of lability aimed at ensuring the optimal form of adaptation to muscular work. The significant influence of a combination of systematic physical and psycho-emotional loads on the nature of these changes is proved. There is a clear functional dependence between the level of functional fitness of the body and indicators of structural and functional organization of the heart, namely: the deterioration of these indicators is accompanied by a marked decrease in functional fitness (level of physical performance and maximum oxygen consumption).</jats:p
    corecore