31 research outputs found
Neural and behavioral correlates of aberrant salience in individuals at risk for psychosis
Correction to the original article published in
Schizophrenia Bulletin, Volume 39, Issue 6, 1 November 2013, Pages 1328–1336; https://doi.org/10.1093/schbul/sbs147
The impact of CACNA1C gene, and its epistasis with ZNF804A, on white matter microstructure in health, schizophrenia and bipolar disorder
Genome-wide studies have identified allele A (adenine) of single nucleotide polymorphism (SNP) rs1006737 of the calcium-channel CACNA1C gene as a risk factor for both schizophrenia (SZ) and bipolar disorder (BD) as well as allele A for rs1344706 in the zinc-finger ZNF804A gene. These illnesses have also been associated with white matter abnormalities, reflected by reductions in fractional anisotropy (FA), measured using diffusion tensor imaging (DTI). We assessed the impact of the CACNA1C psychosis risk variant on FA in SZ, BD and health. 230 individuals (with existing ZNF804A rs1344706 genotype data) were genotyped for CACNA1C rs1006737 and underwent DTI. FA data was analysed with tract-based spatial statistics and threshold-free cluster enhancement significance correction (p < 0.05) to detect effects of CACNA1C genotype on FA, and its potential interaction with ZNF804A genotype and with diagnosis, on FA. There was no significant main effect of the CACNA1C genotype on FA, nor diagnosis by genotype(s) interactions. Nevertheless, when inspecting SZ in particular, risk allele carriers had significantly lower FA than the protective genotype individuals, in portions of the left middle occipital and parahippocampal gyri, right cerebelleum, left optic radiation and left inferior and superior temporal gyri. Our data suggests a minor involvement of CACNA1C rs1006737 in psychosis via conferring susceptibility to white matter microstructural abnormalities in SZ. Put in perspective, ZNF804A rs1344706, not only had a significant main effect, but its SZ-specific effects were two orders of magnitude more widespread than that of CACNA1C rs1006737
The influence of polygenic risk for bipolar disorder on neural activation assessed using fMRI
Genome-wide association studies (GWAS) have demonstrated a significant polygenic contribution to bipolar disorder (BD) where disease risk is determined by the summation of many alleles of small individual magnitude. Modelling polygenic risk scores may be a powerful way of identifying disrupted brain regions whose genetic architecture is related to that of BD. We determined the extent to which common genetic variation underlying risk to BD affected neural activation during an executive processing/language task in individuals at familial risk of BD and healthy controls. Polygenic risk scores were calculated for each individual based on GWAS data from the Psychiatric GWAS Consortium Bipolar Disorder Working Group (PGC-BD) of over 16 000 subjects. The familial group had a significantly higher polygene score than the control group (P=0.04). There were no significant group by polygene interaction effects in terms of association with brain activation. However, we did find that an increasing polygenic risk allele load for BD was associated with increased activation in limbic regions previously implicated in BD, including the anterior cingulate cortex and amygdala, across both groups. The findings suggest that this novel polygenic approach to examine brain-imaging data may be a useful means of identifying genetically mediated traits mechanistically linked to the aetiology of BD
The effects of an extensive exercise programme on the progression of Mild Cognitive Impairment (MCI): study protocol for a randomised controlled trial
Background
Exercise interventions to prevent dementia and delay cognitive decline have gained considerable attention in recent years. Human and animal studies have demonstrated that regular physical activity targets brain function by increasing cognitive reserve. There is also evidence of structural changes caused by exercise in preventing or delaying the genesis of neurodegeneration. Although initial studies indicate enhanced cognitive performance in patients with mild cognitive impairment (MCI) following an exercise intervention, little is known about the effect of an extensive, controlled and regular exercise regimen on the neuropathology of patients with MCI. This study aims to determine the effects of an extensive exercise programme on the progression of MCI.
Methods/design
This randomised controlled clinical intervention study will take place across three European sites. Seventy-five previously sedentary patients with a clinical diagnosis of MCI will be recruited at each site. Participants will be randomised to one of three groups. One group will receive a standardised 1-year extensive aerobic exercise intervention (3 units of 45 min/week). The second group will complete stretching and toning (non-aerobic) exercise (3 units of 45 min/week) and the third group will act as the control group. Change in all outcomes will be measured at baseline (T0), after six months (T1) and after 12 months (T2). The primary outcome, cognitive performance, will be determined by a neuropsychological test battery (CogState battery, Trail Making Test and Verbal fluency). Secondary outcomes include Montreal Cognitive Assessment (MoCA), cardiovascular fitness, physical activity, structural changes of the brain, quality of life measures and measures of frailty. Furthermore, outcome variables will be related to genetic variations on genes related to neurogenesis and epigenetic changes in these genes caused by the exercise intervention programme.
Discussion
The results will add new insights into the prevailing notion that exercise may slow the rate of cognitive decline in MCI
Age, anticoagulants, hypertension and cardiovascular genetic traits predict cranial ischaemic complications in patients with giant cell arteritis
\ua9 Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ on behalf of EULAR.Objectives: This project aimed to determine whether cranial ischaemic complications at the presentation of giant cell arteritis (GCA) were associated with pre-existing cardiovascular (CV) risk factors, CV disease or genetic risk of CV-related traits. Methods: 1946 GCA patients with clinicodemographic data at GCA presentation were included. Associations between pre-existing CV-related traits (including Polygenic Risk Scores (PRS) for CV traits) and cranial ischaemic complications were tested. A model for cranial ischaemic complications was optimised using an elastic net approach. Positional gene mapping of associated PRS was performed to improve biological understanding. Results: In a sample of 1946 GCA patients (median age=71, 68.7% female), 17% had cranial ischaemic complications at presentation. In univariable analyses, 10 variables were associated with complications (likelihood-ratio test p≤0.05). In multivariable analysis, the two variables with the strongest effects, with or without PRS in the model, were anticoagulant therapy (adjusted OR (95% CI)=0.21 (0.05 to 0.62), p=4.95
710-3) and age (adjusted OR (95% CI)=1.60 (0.73 to 3.66), p=2.52
710-3, for ≥80 years versus <60 years). In sensitivity analyses omitting anticoagulant therapy from multivariable analysis, age and hypertension were associated with cranial ischaemic complications at presentation (hypertension: adjusted OR (95% CI)=1.35 (1.03 to 1.75), p=0.03). Positional gene mapping of an associated transient ischaemic attack PRS identified TEK, CD96 and MROH9 loci. Conclusion: Age and hypertension were risk factors for cranial ischaemic complications at GCA presentation, but in this dataset, anticoagulation appeared protective. Positional gene mapping suggested a role for immune and coagulation-related pathways in the pathogenesis of complications. Further studies are needed before implementation in clinical practice
Correlations between Structural and Effective connectivity measurements in familial schizophrenia: a DTI and DCM study
Effects of risk for bipolar disorder on brain function: A twin and family study
Bipolar disorder (BPD) is associated with altered regional brain function during the performance of cognitive tasks. The relative contribution of genetic and environmental risk factors for BPD to these changes has not yet been quantified. We sought to address this issue in a functional neuroimaging study of people who varied in their risk for BPD. Functional magnetic resonance imaging was used to study 124 subjects (29 twin and 9 sibling pairs with at least one member with BPD, and 24 healthy twin pairs) performing a working memory task. We assessed the influence of risk for BPD on regional brain function during the task in a two stage process. Firstly, we identified areas where there were group differences in activation. Secondly, we estimated the heritability and phenotypic correlation of activation and BPD using genetic modeling. BPD was associated with increased activation in the anterior cingulate, orbitofrontal, medial prefrontal, and left precentral cortices, and in the precuneus. Within these regions, activation in the orbitofrontal cortex rendered the most significant heritability estimate (h2=0.40), and was significantly correlated with BPD phenotype (rph=0.29). A moderate proportion of the genetic influences (rg=0.69) acting on both BPD and on the degree of orbitofrontal activation were shared. These findings suggest that genetic factors that confer vulnerability to BPD alter brain function in BPD
