11,211 research outputs found
Recommended from our members
Altered brain connectivity in sudden unexpected death in epilepsy (SUDEP) revealed using resting-state fMRI.
The circumstances surrounding SUDEP suggest autonomic or respiratory collapse, implying central failure of regulation or recovery. Characterisation of the communication among brain areas mediating such processes may shed light on mechanisms and noninvasively indicate risk. We used rs-fMRI to examine network properties among brain structures in people with epilepsy who suffered SUDEP (n = 8) over an 8-year follow-up period, compared with matched high- and low-risk subjects (n = 16/group) who did not suffer SUDEP during that period, and a group of healthy controls (n = 16). Network analysis was employed to explore connectivity within a 'regulatory-subnetwork' of brain regions involved in autonomic and respiratory regulation, and over the whole-brain. Modularity, the extent of network organization into separate modules, was significantly reduced in the regulatory-subnetwork, and the whole-brain, in SUDEP and high-risk. Increased participation, a local measure of inter-modular belonging, was evident in SUDEP and high-risk groups, particularly among thalamic structures. The medial prefrontal thalamus was increased in SUDEP compared with all other control groups, including high-risk. Patterns of hub topology were similar in SUDEP and high-risk, but were more extensive in low-risk patients, who displayed greater hub prevalence and a radical reorganization of hubs in the subnetwork. SUDEP is associated with reduced functional organization among cortical and sub-cortical brain regions mediating autonomic and respiratory regulation. Living high-risk subjects demonstrated similar patterns, suggesting such network measures may provide prospective risk-indicating value, though a crucial difference between SUDEP and high-risk was altered connectivity of the medial thalamus in SUDEP, which was also elevated compared with all sub-groups. Disturbed thalamic connectivity may reflect a potential non-invasive marker of elevated SUDEP risk
Investigation on the consequential features of Southwest Monsoon-2007 Onset and Super cyclone "Gonu" using Satellite, Model and Ground-based data
Onset features of the Summer monsoon-2007 were analyzed using data from five different sources, namely,the Tropical Rainfall Measuring Mission (TRMM) 3-hourly rainfall, National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) wind reanalysis data set, NOAA Outgoing Longwave Radiation (OLR), cloud imageries from the meteosat satellite,cloud base height and
cloud occurrence frequency from a ground-based Vaisala Laser Ceilometer at Thiruvananthapuram. On the day of onset, 33 mm of rainfall was registered by TRMM satellite over south Kerala region with 80% cloud frequency and an averaged cloud base height of 2 km. On the next day, the formation of ‘Gonu’ super cyclone as a consequence of the convergence of monsoon onset surge in the Arabian Sea has caused the dissipation of cloud bands in the Arabian Sea and in the Bay of Bengal, except over the region of the
system. This caused a lull situation for about ten days after the India Meteorological Department (IMD)
declared monsoon onset. In fact, the remarkable characteristics of onset, such as deepening of westerlies
and strengthening of low level jet streams were observed only after two weeks of IMD declared monsoon onset. Another unique behavior of 2007 monsoon onset was that the Arabian Sea branch of monsoon onset surge has advanced faster than the Bay of Bengal branch in the early stage
A Comprehensive Workflow for General-Purpose Neural Modeling with Highly Configurable Neuromorphic Hardware Systems
In this paper we present a methodological framework that meets novel
requirements emerging from upcoming types of accelerated and highly
configurable neuromorphic hardware systems. We describe in detail a device with
45 million programmable and dynamic synapses that is currently under
development, and we sketch the conceptual challenges that arise from taking
this platform into operation. More specifically, we aim at the establishment of
this neuromorphic system as a flexible and neuroscientifically valuable
modeling tool that can be used by non-hardware-experts. We consider various
functional aspects to be crucial for this purpose, and we introduce a
consistent workflow with detailed descriptions of all involved modules that
implement the suggested steps: The integration of the hardware interface into
the simulator-independent model description language PyNN; a fully automated
translation between the PyNN domain and appropriate hardware configurations; an
executable specification of the future neuromorphic system that can be
seamlessly integrated into this biology-to-hardware mapping process as a test
bench for all software layers and possible hardware design modifications; an
evaluation scheme that deploys models from a dedicated benchmark library,
compares the results generated by virtual or prototype hardware devices with
reference software simulations and analyzes the differences. The integration of
these components into one hardware-software workflow provides an ecosystem for
ongoing preparative studies that support the hardware design process and
represents the basis for the maturity of the model-to-hardware mapping
software. The functionality and flexibility of the latter is proven with a
variety of experimental results
Should physical activity recommendations be ethnicity-specific? Evidence from a cross-sectional study of south Asian and European men
Background
Expert bodies and health organisations recommend that adults undertake at least 150 min.week−1 of moderate-intensity physical activity (MPA). However, the underpinning data largely emanate from studies of populations of European descent. It is unclear whether this level of activity is appropriate for other ethnic groups, particularly South Asians, who have increased cardio-metabolic disease risk compared to Europeans. The aim of this study was to explore the level of MPA required in South Asians to confer a similar cardio-metabolic risk profile to that observed in Europeans undertaking the currently recommended MPA level of 150 min.week−1.<p></p>
Methods
Seventy-five South Asian and 83 European men, aged 40–70, without cardiovascular disease or diabetes had fasted blood taken, blood pressure measured, physical activity assessed objectively (using accelerometry), and anthropometric measures made. Factor analysis was used to summarise measured risk biomarkers into underlying latent ‘factors’ for glycaemia, insulin resistance, lipid metabolism, blood pressure, and overall cardio-metabolic risk. Age-adjusted regression models were used to determine the equivalent level of MPA (in bouts of ≥10 minutes) in South Asians needed to elicit the same value in each factor as Europeans undertaking 150 min.week−1 MPA.<p></p>
Findings
For all factors, except blood pressure, equivalent MPA values in South Asians were significantly higher than 150 min.week−1; the equivalent MPA value for the overall cardio-metabolic risk factor was 266 (95% CI 185-347) min.week−1.<p></p>
Conclusions
South Asian men may need to undertake greater levels of MPA than Europeans to exhibit a similar cardio-metabolic risk profile, suggesting that a conceptual case can be made for ethnicity-specific physical activity guidance. Further study is needed to extend these findings to women and to replicate them prospectively in a larger cohort.<p></p>
The effect of surveillance and appreciative inquiry on puerperal infections : a longitudinal cohort study in India
Peer reviewedPublisher PD
Coalescent-based genome analyses resolve the early branches of the euarchontoglires
Despite numerous large-scale phylogenomic studies, certain parts of the mammalian tree are extraordinarily difficult to resolve. We used the coding regions from 19 completely sequenced genomes to study the relationships within the super-clade Euarchontoglires (Primates, Rodentia, Lagomorpha, Dermoptera and Scandentia) because the placement of Scandentia within this clade is controversial. The difficulty in resolving this issue is due to the short time spans between the early divergences of Euarchontoglires, which may cause incongruent gene trees. The conflict in the data can be depicted by network analyses and the contentious relationships are best reconstructed by coalescent-based analyses. This method is expected to be superior to analyses of concatenated data in reconstructing a species tree from numerous gene trees. The total concatenated dataset used to study the relationships in this group comprises 5,875 protein-coding genes (9,799,170 nucleotides) from all orders except Dermoptera (flying lemurs). Reconstruction of the species tree from 1,006 gene trees using coalescent models placed Scandentia as sister group to the primates, which is in agreement with maximum likelihood analyses of concatenated nucleotide sequence data. Additionally, both analytical approaches favoured the Tarsier to be sister taxon to Anthropoidea, thus belonging to the Haplorrhine clade. When divergence times are short such as in radiations over periods of a few million years, even genome scale analyses struggle to resolve phylogenetic relationships. On these short branches processes such as incomplete lineage sorting and possibly hybridization occur and make it preferable to base phylogenomic analyses on coalescent methods
Acute encephalitis syndrome surveillance, Kushinagar district, Uttar Pradesh, India, 2011-2012
In India, quality surveillance for acute encephalitis syndrome (AES), including laboratory testing, is necessary for understanding the epidemiology and etiology of AES, planning interventions, and developing policy. We reviewed AES surveillance data for January 2011-June 2012 from Kushinagar District, Uttar Pradesh, India. Data were cleaned, incidence was determined, and demographic characteristics of cases and data quality were analyzed. A total of 812 AES case records were identified, of which 23\% had illogical entries. AES incidence was highest among boys<6 years of age, and cases peaked during monsoon season. Records for laboratory results (available for Japanese encephalitis but not AES) and vaccination history were largely incomplete, so inferences about the epidemiology and etiology of AES could not be made. The low-quality AES/Japanese encephalitis surveillance data in this area provide little evidence to support development of prevention and control measures, estimate the effect of interventions, and avoid the waste of public health resources
Complexity without chaos: Plasticity within random recurrent networks generates robust timing and motor control
It is widely accepted that the complex dynamics characteristic of recurrent
neural circuits contributes in a fundamental manner to brain function. Progress
has been slow in understanding and exploiting the computational power of
recurrent dynamics for two main reasons: nonlinear recurrent networks often
exhibit chaotic behavior and most known learning rules do not work in robust
fashion in recurrent networks. Here we address both these problems by
demonstrating how random recurrent networks (RRN) that initially exhibit
chaotic dynamics can be tuned through a supervised learning rule to generate
locally stable neural patterns of activity that are both complex and robust to
noise. The outcome is a novel neural network regime that exhibits both
transiently stable and chaotic trajectories. We further show that the recurrent
learning rule dramatically increases the ability of RRNs to generate complex
spatiotemporal motor patterns, and accounts for recent experimental data
showing a decrease in neural variability in response to stimulus onset
Universal time-dependent deformations of Schrodinger geometry
We investigate universal time-dependent exact deformations of Schrodinger
geometry. We present 1) scale invariant but non-conformal deformation, 2)
non-conformal but scale invariant deformation, and 3) both scale and conformal
invariant deformation. All these solutions are universal in the sense that we
could embed them in any supergravity constructions of the Schrodinger invariant
geometry. We give a field theory interpretation of our time-dependent
solutions. In particular, we argue that any time-dependent chemical potential
can be treated exactly in our gravity dual approach.Comment: 24 pages, v2: references adde
- …
