241 research outputs found
Computational modelling of emboli travel trajectories in cerebral arteries: Influence of microembolic particle size and density
This article has been made available through the Brunel Open Access Publishing Fund.Ischaemic stroke is responsible for up to 80 % of stroke cases. Prevention of the reoccurrence of ischaemic attack or stroke for patients who survived the first symptoms is the major treatment target. Accurate diagnosis of the emboli source for a specific infarction lesion is very important for a better treatment for the patient. However, due to the complex blood flow patterns in the cerebral arterial network, little is known so far of the embolic particle flow trajectory and its behaviour in such a complex flow field. The present study aims to study the trajectories of embolic particles released from carotid arteries and basilar artery in a cerebral arterial network and the influence of particle size, mass and release location to the particle distributions, by computational modelling. The cerebral arterial network model, which includes major arteries in the circle of Willis and several generations of branches from them, was generated from MRI images. Particles with diameters of 200, 500 and 800 μ m and densities of 800, 1,030 and 1,300 kg/m 3 were released in the vessel's central and near-wall regions. A fully coupled scheme of particle and blood flow in a computational fluid dynamics software ANASYS CFX 13 was used in the simulations. The results show that heavy particles (density large than blood or a diameter larger than 500 μ m) normally have small travel speeds in arteries; larger or lighter embolic particles are more likely to travel to large branches in cerebral arteries. In certain cases, all large particles go to the middle cerebral arteries; large particles with higher travel speeds in large arteries are likely to travel at more complex and tortuous trajectories; emboli raised from the basilar artery will only exit the model from branches of basilar artery and posterior cerebral arteries. A modified Circle of Willis configuration can have significant influence on particle distributions. The local branch patterns of internal carotid artery to middle cerebral artery and anterior communicating artery can have large impact on such distributions. © 2014 The Author(s)
Research into the Health Benefits of Sprint Interval Training Should Focus on Protocols with Fewer and Shorter Sprints
Over the past decade, it has been convincingly shown that regularly performing repeated brief supramaximal cycle sprints (sprint interval training [SIT]) is associated with aerobic adaptations and health benefits similar to or greater than with moderate-intensity continuous training (MICT). SIT is often promoted as a time-efficient exercise strategy, but the most commonly studied SIT protocol (4–6 repeated 30-s Wingate sprints with 4 min recovery, here referred to as ‘classic’ SIT) takes up to approximately 30 min per session. Combined with high associated perceived exertion, this makes classic SIT unsuitable as an alternative/adjunct to current exercise recommendations involving MICT. However, there are no indications that the design of the classic SIT protocol has been based on considerations regarding the lowest number or shortest duration of sprints to optimise time efficiency while retaining the associated health benefits. In recent years, studies have shown that novel SIT protocols with both fewer and shorter sprints are efficacious at improving important risk factors of noncommunicable diseases in sedentary individuals, and provide health benefits that are no worse than those associated with classic SIT. These shorter/easier protocols have the potential to remove many of the common barriers to exercise in the general population. Thus, based on the evidence summarised in this current opinion paper, we propose that there is a need for a fundamental change in focus in SIT research in order to move away from further characterising the classic SIT protocol and towards establishing acceptable and effective protocols that involve minimal sprint durations and repetitions
Comparative 3D analyses and palaeoecology of giant early amphibians (Temnospondyli: Stereospondyli)
Macroevolutionary, palaeoecological and biomechanical analyses in deep time offer the possibility to decipher the structural constraints, ecomorphological patterns and evolutionary history of extinct groups. Here, 3D comparative biomechanical analyses of the extinct giant early amphibian group of stereospondyls together with living lissamphibians and crocodiles, shows that: i) stereospondyls had peculiar palaeoecological niches with proper bites and stress patterns very different than those of giant salamanders and crocodiles; ii) their extinction may be correlated with the appearance of neosuchians, which display morphofunctional innovations. Stereospondyls weathered the end-Permian mass extinction, re-radiated, acquired gigantic sizes and dominated (semi) aquatic ecosystems during the Triassic. Because these ecosystems are today occupied by crocodilians, and stereospondyls are extinct amphibians, their palaeobiology is a matter of an intensive debate: stereospondyls were a priori compared with putative living analogous such as giant salamanders and/or crocodilians and our new results try to close this debate.Peer ReviewedPostprint (published version
Genetic aspects of dental disorders
The document attached has been archived with permission from the Australian Dental Association. An external link to the publisher’s copy is included.This paper reviews past and present applications of quantitative and molecular genetics to dental disorders. Examples are given relating to craniofacial development (including malocclusion), oral supporting tissues (including periodontal diseases) and dental hard tissues (including defects of enamel and dentine as well as dental caries). Future developments and applications to clinical dentistry are discussed. Early investigations confirmed genetic bases to dental caries, periodontal diseases and malocclusion, but research findings have had little impact on clinical practice. The complex multifactorial aetiologies of these conditions, together with methodological problems, have limited progress until recently. Present studies are clarifying previously unrecognized genetic and phenotypic heterogeneities and attempting to unravel the complex interactions between genes and environment by applying new statistical modelling approaches to twin and family data. linkage studies using highly polymorphic DNA markers are providing a means of locating candidate genes, including quantitative trait loci (QTL). In future, as knowledge increases: it should be possible to implement preventive strategies for those genetically-predisposed individuals who are identified-predisposed individuals who are identified to be at risk.Grant C. Townsend, Michael J. Aldred and P. Mark Bartol
Cooperation among cancer cells: applying game theory to cancer
Cell cooperation promotes many of the hallmarks of cancer via the secretion of diffusible factors that can affect cancer cells or stromal cells in the tumour microenvironment. This cooperation cannot be explained simply as the collective action of cells for the benefit of the tumour because non-cooperative subclones can constantly invade and free-ride on the diffusible factors produced by the cooperative cells. A full understanding of cooperation among the cells of a tumour requires methods and concepts from evolutionary game theory, which has been used successfully in other areas of biology to understand similar problems but has been underutilized in cancer research. Game theory can provide insights into the stability of cooperation among cells in a tumour and into the design of potentially evolution-proof therapies that disrupt this cooperation
The importance of iron in long-term survival of maintenance hemodialysis patients treated with epoetin-alfa and intravenous iron: analysis of 9.5 years of prospectively collected data
<p>Abstract</p> <p>Background</p> <p>In patients treated by maintenance hemodialysis the relationship to survival of hemoglobin level and administered epoetin-alfa and intravenous iron is controversial. The study aim was to determine effects on patient survival of administered epoetin-alfa and intravenous iron, and of hemoglobin and variables related to iron status.</p> <p>Methods</p> <p>The patients were 1774 treated by maintenance hemodialysis in 3 dialysis units in New York, NY from January 1998 to June, 2007. A patient-centered, coded, electronic patient record used in patient care enabled retrospective analysis of data collected prospectively. For survival analysis, patients were censored when transplanted, transferred to hemodialysis at home or elsewhere, peritoneal dialysis. Univariate Kaplan-Meier analysis was followed by multivariate analysis with Cox's regression, using as variables age, race, gender, major co-morbid conditions, epoetin-alfa and intravenous iron administered, and 15 laboratory tests.</p> <p>Results</p> <p>Median age was 59 years, epoetin-alfa (interquartile range) 18,162 (12,099, 27,741) units/week, intravenous iron 301 (202, 455) mg/month, survival 789 (354, 1489) days. Median hemoglobin was 116 (110, 120)g/L, transferrin saturation 29.7 (24.9, 35.1)%, serum ferritin 526 (247, 833) μg/L, serum albumin 39.0 (36.3, 41.5) g/L. Survival was better the higher the hemoglobin, best with > 120 g/L. Epoetin-alfa effect on survival was weak but had statistically significant interaction with intravenous iron. For intravenous iron, survival was best with 1–202 mg/month, slightly worse with 202–455 mg/month; it was worst with no intravenous iron, only slightly better with > 455 mg/month. Survival was worst with transferrin saturation ≤ 16%, serum ferritin ≤ 100 μg/L, best with transferrin saturation > 25%, serum ferritin > 600 μg/L The effects of each of hemoglobin, intravenous iron, transferrin saturation, and serum ferritin on survival were independently significant and not mediated by other predictors in the model.</p> <p>Conclusion</p> <p>Long term survival of maintenance hemodialysis patients was favorably affected by a relatively high hemoglobin level, by moderate intravenous iron administration, and by indicators of iron sufficiency. It was unfavorably influenced by a low hemoglobin level, and by indicators of iron deficiency.</p
Rationale and design of the oral HEMe iron polypeptide Against Treatment with Oral Controlled Release Iron Tablets trial for the correction of anaemia in peritoneal dialysis patients (HEMATOCRIT trial)
Background: The main hypothesis of this study is that oral heme iron polypeptide (HIP; Proferrin (R) ES) administration will more effectively augment iron stores in erythropoietic stimulatory agent (ESA)-treated peritoneal dialysis (PD) patients than conventional oral iron supplementation (Ferrogradumet (R))
Whole Genome Sequence Analysis of Cryptococcus gattii from the Pacific Northwest Reveals Unexpected Diversity
A recent emergence of Cryptococcus gattii in the Pacific Northwest involves strains that fall into three primarily clonal molecular subtypes: VGIIa, VGIIb and VGIIc. Multilocus sequence typing (MLST) and variable number tandem repeat analysis appear to identify little diversity within these molecular subtypes. Given the apparent expansion of these subtypes into new geographic areas and their ability to cause disease in immunocompetent individuals, differentiation of isolates belonging to these subtypes could be very important from a public health perspective. We used whole genome sequence typing (WGST) to perform fine-scale phylogenetic analysis on 20 C. gattii isolates, 18 of which are from the VGII molecular type largely responsible for the Pacific Northwest emergence. Analysis both including and excluding (289,586 SNPs and 56,845 SNPs, respectively) molecular types VGI and VGIII isolates resulted in phylogenetic reconstructions consistent, for the most part, with MLST analysis but with far greater resolution among isolates. The WGST analysis presented here resulted in identification of over 100 SNPs among eight VGIIc isolates as well as unique genotypes for each of the VGIIa, VGIIb and VGIIc isolates. Similar levels of genetic diversity were found within each of the molecular subtype isolates, despite the fact that the VGIIb clade is thought to have emerged much earlier. The analysis presented here is the first multi-genome WGST study to focus on the C. gattii molecular subtypes involved in the Pacific Northwest emergence and describes the tools that will further our understanding of this emerging pathogen
Trace Levels of Innate Immune Response Modulating Impurities (IIRMIs) Synergize to Break Tolerance to Therapeutic Proteins
Therapeutic proteins such as monoclonal antibodies, replacement enzymes and toxins have significantly improved the therapeutic options for multiple diseases, including cancer and inflammatory diseases as well as enzyme deficiencies and inborn errors of metabolism. However, immune responses to these products are frequent and can seriously impact their safety and efficacy. Of the many factors that can impact protein immunogenicity, this study focuses on the role of innate immune response modulating impurities (IIRMIs) that could be present despite product purification and whether these impurities can synergize to facilitate an immunogenic response to therapeutic proteins. Using lipopolysaccharide (LPS) and CpG ODN as IIRMIs we showed that trace levels of these impurities synergized to induce IgM, IFNγ, TNFα and IL-6 expression. In vivo, trace levels of these impurities synergized to increase antigen-specific IgG antibodies to ovalbumin. Further, whereas mice treated with human erythropoietin showed a transient increase in hematocrit, those that received human erythropoietin containing low levels of IIRMIs had reduced response to erythropoietin after the 1st dose and developed long-lasting anemia following subsequent doses. This suggests that the presence of IIRMIs facilitated a breach in tolerance to the endogenous mouse erythropoietin. Overall, these studies indicate that the risk of enhancing immunogenicity should be considered when establishing acceptance limits of IIRMIs for therapeutic proteins
Left ventricular twist mechanics during incremental cycling and knee extension exercise in healthy men
Purpose: The objective of the present study was to investigate left ventricular (LV) twist mechanics in response to incremental cycling and isometric knee extension exercises. Methods: Twenty-six healthy male participants (age = 30.42 ± 6.17 years) were used to study peak twist mechanics at rest and during incremental semi-supine cycling at 30 and 60% work rate maximum (W) and during short duration (15 s contractions) isometric knee extension at 40 and 75% maximum voluntary contraction (MVC), using two-dimensional speckle tracking echocardiography. Results: Data presented as mean ± standard deviation or median (interquartile range). LV twist increased from rest to 30% W (13.21° ± 4.63° to 20.04° ± 4.76°, p 0.05), whilst twisting velocity increased (rest 89.15° ± 21.77° s to 75% MVC 124.32° ± 34.89° s, p 0.05) then increased from 40 to 75% MVC [−98.44 (43.54)° s to −138.42 (73.29)° s, p < 0.01]. Apical rotations and rotational velocities were greater than basal during all conditions and intensities (all p < 0.01). Conclusion: Cycling increased LV twist to 30% W which then remained unchanged thereafter, whereas twisting velocities showed further increases to greater intensities. A novel finding is that LV twist was unaffected by incremental knee extension, yet systolic and diastolic twisting velocities augmented with isometric exercise
- …
