26 research outputs found

    Assessing the Value of Recreational Divers for Censusing Elasmobranchs

    Get PDF
    BACKGROUND: Around the world, researchers are using the observations and experiences of citizens to describe patterns in animal populations. This data is often collected via ongoing sampling or by synthesizing past experiences. Since elasmobranchs are relatively rare, obtaining data for broad-scale trend analysis requires high sampling effort. Elasmobranchs are also relatively large and conspicuous and therefore it may be possible to enlist recreational divers to collect data on their occurrence and relative abundance from daily dive activities. For this, however, a good understanding of the value of data collected by recreational divers is essential. METHODOLOGY/PRINCIPAL FINDINGS: Here, we explore the value of recreational divers for censusing elasmobranchs using a diverse set of data sources. First, we use a simulation experiment to explore detection rates of the roving diver technique, used by recreational divers, across a range of fish densities and speeds. Next, using a field survey, we show that inexperienced recreational divers detect and count elasmobranchs as well as experienced recreational divers. Finally, we use semi-structured interviews of recreational dive instructors to demonstrate the value of their recollections in terms of effort and their descriptions of spatial and temporal distributions of sharks in Thailand. CONCLUSIONS/SIGNIFICANCE: Overall, this study provides initial ground-work for using recreational divers for monitoring elasmobranch populations. If used appropriately, citizen-collected data may provide additional information that can be used to complement more standardized surveys and to describe population trends across a range of spatial and temporal scales. Due to the non-extractive nature of this data, recreational divers may also provide important insight into the success of conservation initiatives, such as shark sanctuaries and no-take zones

    Gene expression of Lactobacillus plantarum and the commensal microbiota in the ileum of healthy and early SIV-infected rhesus macaques

    No full text
    Chronic HIV infection results in impairment of gut-associated lymphoid tissue leading to systemic immune activation. We previously showed that in early SIV-infected rhesus macaques intestinal dysfunction is initiated with the induction of the IL-1β pathway in the small intestine and reversed by treatment with an exogenous Lactobacillus plantarum strain. Here, we provide evidence that the transcriptomes of L. plantarum and ileal microbiota are not altered shortly after SIV infection. L. plantarum adapts to the small intestine by expressing genes required for tolerating oxidative stress, modifying cell surface composition, and consumption of host glycans. The ileal microbiota of L. plantarum-containing healthy and SIV+ rhesus macaques also transcribed genes for host glycan metabolism as well as for cobalamin biosynthesis. Expression of these pathways by bacteria were proposed but not previously demonstrated in the mammalian small intestine
    corecore