521 research outputs found
Microwave amplification with nanomechanical resonators
Sensitive measurement of electrical signals is at the heart of modern science
and technology. According to quantum mechanics, any detector or amplifier is
required to add a certain amount of noise to the signal, equaling at best the
energy of quantum fluctuations. The quantum limit of added noise has nearly
been reached with superconducting devices which take advantage of
nonlinearities in Josephson junctions. Here, we introduce a new paradigm of
amplification of microwave signals with the help of a mechanical oscillator. By
relying on the radiation pressure force on a nanomechanical resonator, we
provide an experimental demonstration and an analytical description of how the
injection of microwaves induces coherent stimulated emission and signal
amplification. This scheme, based on two linear oscillators, has the advantage
of being conceptually and practically simpler than the Josephson junction
devices, and, at the same time, has a high potential to reach quantum limited
operation. With a measured signal amplification of 25 decibels and the addition
of 20 quanta of noise, we anticipate near quantum-limited mechanical microwave
amplification is feasible in various applications involving integrated
electrical circuits.Comment: Main text + supplementary information. 14 pages, 3 figures (main
text), 18 pages, 6 figures (supplementary information
Control of microwave signals using circuit nano-electromechanics
Waveguide resonators are crucial elements in sensitive astrophysical
detectors [1] and circuit quantum electrodynamics (cQED) [2]. Coupled to
artificial atoms in the form of superconducting qubits [3, 4], they now provide
a technologically promising and scalable platform for quantum information
processing tasks [2, 5-8]. Coupling these circuits, in situ, to other quantum
systems, such as molecules [9, 10], spin ensembles [11, 12], quantum dots [13]
or mechanical oscillators [14, 15] has been explored to realize hybrid systems
with extended functionality. Here, we couple a superconducting coplanar
waveguide resonator to a nano-coshmechanical oscillator, and demonstrate
all-microwave field controlled slowing, advancing and switching of microwave
signals. This is enabled by utilizing electromechanically induced transparency
[16-18], an effect analogous to electromagnetically induced transparency (EIT)
in atomic physics [19]. The exquisite temporal control gained over this
phenomenon provides a route towards realizing advanced protocols for storage of
both classical and quantum microwave signals [20-22], extending the toolbox of
control techniques of the microwave field.Comment: 9 figure
Coherent optical wavelength conversion via cavity-optomechanics
We theoretically propose and experimentally demonstrate coherent wavelength
conversion of optical photons using photon-phonon translation in a
cavity-optomechanical system. For an engineered silicon optomechanical crystal
nanocavity supporting a 4 GHz localized phonon mode, optical signals in a 1.5
MHz bandwidth are coherently converted over a 11.2 THz frequency span between
one cavity mode at wavelength 1460 nm and a second cavity mode at 1545 nm with
a 93% internal (2% external) peak efficiency. The thermal and quantum limiting
noise involved in the conversion process is also analyzed, and in terms of an
equivalent photon number signal level are found to correspond to an internal
noise level of only 6 and 4x10-3 quanta, respectively.Comment: 11 pages, 7 figures, appendi
Yukawa potentials in systems with partial periodic boundary conditions I : Ewald sums for quasi-two dimensional systems
Yukawa potentials are often used as effective potentials for systems as
colloids, plasmas, etc. When the Debye screening length is large, the Yukawa
potential tends to the non-screened Coulomb potential ; in this small screening
limit, or Coulomb limit, the potential is long ranged. As it is well known in
computer simulation, a simple truncation of the long ranged potential and the
minimum image convention are insufficient to obtain accurate numerical data on
systems. The Ewald method for bulk systems, i.e. with periodic boundary
conditions in all three directions of the space, has already been derived for
Yukawa potential [cf. Y., Rosenfeld, {\it Mol. Phys.}, \bm{88}, 1357, (1996)
and G., Salin and J.-M., Caillol, {\it J. Chem. Phys.}, \bm{113}, 10459,
(2000)], but for systems with partial periodic boundary conditions, the Ewald
sums have only recently been obtained [M., Mazars, {\it J. Chem. Phys.}, {\bf
126}, 056101 (2007)]. In this paper, we provide a closed derivation of the
Ewald sums for Yukawa potentials in systems with periodic boundary conditions
in only two directions and for any value of the Debye length. A special
attention is paid to the Coulomb limit and its relation with the
electroneutrality of systems.Comment: 40 pages, 5 figures and 4 table
Symbiont Identity Impacts the Microbiome and Volatilome of a Model Cnidarian-Dinoflagellate Symbiosis.
The symbiosis between cnidarians and dinoflagellates underpins the success of reef-building corals in otherwise nutrient-poor habitats. Alterations to symbiotic state can perturb metabolic homeostasis and thus alter the release of biogenic volatile organic compounds (BVOCs). While BVOCs can play important roles in metabolic regulation and signalling, how the symbiotic state affects BVOC output remains unexplored. We therefore characterised the suite of BVOCs that comprise the volatilome of the sea anemone Exaiptasia diaphana ('Aiptasia') when aposymbiotic and in symbiosis with either its native dinoflagellate symbiont Breviolum minutum or the non-native symbiont Durusdinium trenchii. In parallel, the bacterial community structure in these different symbiotic states was fully characterised to resolve the holobiont microbiome. Based on rRNA analyses, 147 unique amplicon sequence variants (ASVs) were observed across symbiotic states. Furthermore, the microbiomes were distinct across the different symbiotic states: bacteria in the family Vibrionaceae were the most abundant in aposymbiotic anemones; those in the family Crocinitomicaceae were the most abundant in anemones symbiotic with D. trenchii; and anemones symbiotic with B. minutum had the highest proportion of low-abundance ASVs. Across these different holobionts, 142 BVOCs were detected and classified into 17 groups based on their chemical structure, with BVOCs containing multiple functional groups being the most abundant. Isoprene was detected in higher abundance when anemones hosted their native symbiont, and dimethyl sulphide was detected in higher abundance in the volatilome of both Aiptasia-Symbiodiniaceae combinations relative to aposymbiotic anemones. The volatilomes of aposymbiotic anemones and anemones symbiotic with B. minutum were distinct, while the volatilome of anemones symbiotic with D. trenchii overlapped both of the others. Collectively, our results are consistent with previous reports that D. trenchii produces a metabolically sub-optimal symbiosis with Aiptasia, and add to our understanding of how symbiotic cnidarians, including corals, may respond to climate change should they acquire novel dinoflagellate partners
Quantification of structural changes in the corpus callosumin children with profound hypoxic-ischaemic brain injury
Background Birth-related acute profound hypoxic–ischaemic
brain injury has specific patterns of damage including the
paracentral lobules.
Objective To test the hypothesis that there is anatomically coherent
regional volume loss of the corpus callosum as a result of
this hemispheric abnormality.
Materials and methods Study subjects included 13 children
with proven acute profound hypoxic–ischaemic brain injury
and 13 children with developmental delay but no brain abnormalities.
A computerised system divided the corpus callosum
into 100 segments, measuring each width. Principal component
analysis grouped the widths into contiguous anatomical regions.
We conducted analysis of variance of corpus callosum widths as
well as support vector machine stratification into patient groups.
Results There was statistically significant narrowing of the
mid–posterior body and genu of the corpus callosum in children
with hypoxic–ischaemic brain injury. Support vector machine
analysis yielded over 95% accuracy in patient group stratification
using the corpus callosum centile widths.
Conclusion Focal volume loss is seen in the corpus callosum
of children with hypoxic–ischaemic brain injury secondary to
loss of commissural fibres arising in the paracentral lobules.
Support vector machine stratification into the hypoxic–ischaemic
brain injury group or the control group on the basis of
corpus callosum width is highly accurate and points towards
rapid clinical translation of this technique as a potential biomarker
of hypoxic–ischaemic brain injur
Critical Thinking in Nursing Education: Literature Review
The need for critical thinking in nursing has been accentuated in response to the rapidly changing health care environment. Nurses must think critically to provide effective care whilst coping with the expansion in role associated with the complexities of current health care systems. This literature review will present a history of inquiry into critical thinking and research to support the conclusion that critical thinking is necessary not only in the clinical practice setting, but also as an integral component of nursing education programs to promote the development of nurses’ critical thinking abilities. The aims of this paper are: (a) to review the literature on critical thinking; (b) to examine the dimensions of critical thinking; (c) to investigate the various critical thinking strategies for their appropriateness to enhance critical thinking in nurses, and; (d) to examine issues relating to evaluation of critical thinking skills in nursing.</ul
Anti-cancer activities of allyl isothiocyanate and its conjugated silicon quantum dots
Allyl isothiocyanate (AITC), a dietary phytochemical in some cruciferous vegetables, exhibits promising anticancer activities in many cancer models. However, previous data showed AITC to have a biphasic effect on cell viability, DNA damage and migration in human hepatoma HepG2 cells. Moreover, in a 3D co-culture of HUVEC with pericytes, it inhibited tube formation at high doses but promoted this at low doses, which confirmed its biphasic effect on angiogenesis. siRNA knockdown of Nrf2 and glutathione inhibition abolished the stimulation effect of AITC on cell migration and DNA damage. The biological activity of a novel AITC-conjugated silicon quantum dots (AITC-SiQDs) has been investigated for the first time. AITC-SiQDs showed similar anti-cancer properties to AITC at high doses while avoiding the low doses stimulation effect. In addition, AITC-SiQDs showed a lower and long-lasting activation of Nrf2 translocation into nucleus which correlated with their levels of cellular uptake, as detected by the intrinsic fluorescence of SiQDs. ROS production could be one of the mechanisms behind the anti-cancer effect of AITC-SiQDs. These data provide novel insights into the biphasic effect of AITC and highlight the application of nanotechnology to optimize the therapeutic potential of dietary isothiocyanates in cancer treatment
Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals
Despite the importance of deep-sea corals, our current understanding of their ecology and evolutionis limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent reevaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea. As such, our data provides direction for future research and further insight to organismal response of deep sea coral to environmental change and ocean warming.Tis work was supported by King Abdullah University of Science and Technology
(KAUST), baseline funds to CRV and Center Competitive Funding (CCF) Program FCC/1/1973-18-01
Genomic conservation and putative downstream functionality of the phosphatidylinositol signalling pathway in the cnidarian-dinoflagellate symbiosis.
The mutualistic cnidarian-dinoflagellate symbiosis underpins the evolutionary success of stony corals and the persistence of coral reefs. However, a molecular understanding of the signalling events that lead to the successful establishment and maintenance of this symbiosis remains unresolved. For example, the phosphatidylinositol (PI) signalling pathway has been implicated during the establishment of multiple mutualistic and parasitic interactions across the kingdoms of life, yet its role within the cnidarian-dinoflagellate symbiosis remains unexplored. Here, we aimed to confirm the presence and assess the specific enzymatic composition of the PI signalling pathway across cnidaria and dinoflagellates by compiling 21 symbiotic anthozoan (corals and sea anemones) and 28 symbiotic dinoflagellate (Symbiodiniaceae) transcriptomic and genomic datasets and querying genes related to this pathway. Presence or absence of PI-kinase and PI-phosphatase orthologs were also compared between a broad sampling of taxonomically related symbiotic and non-symbiotic species. Across the symbiotic anthozoans analysed, there was a complete and highly conserved PI pathway, analogous to the pathway found in model eukaryotes. The Symbiodiniaceae pathway showed similarities to its sister taxon, the Apicomplexa, with the absence of PI 4-phosphatases. However, conversely to Apicomplexa, there was also an expansion of homologs present in the PI5-phosphatase and PI5-kinase groups, with unique Symbiodiniaceae proteins identified that are unknown from non-symbiotic unicellular organisms. Additionally, we aimed to unravel the putative functionalities of the PI signalling pathway in this symbiosis by analysing phosphoinositide (PIP)-binding proteins. Analysis of phosphoinositide (PIP)-binding proteins showed that, on average, 2.23 and 1.29% of the total assemblies of anthozoan and Symbiodiniaceae, respectively, have the potential to bind to PIPs. Enrichment of Gene Ontology (GO) terms associated with predicted PIP-binding proteins within each taxon revealed a broad range of functions, including compelling links to processes putatively involved in symbiosis regulation. This analysis establishes a baseline for current understanding of the PI pathway across anthozoans and Symbiodiniaceae, and thus a framework to target future research
- …
