10 research outputs found
Genetic Risk Score for Intracranial Aneurysms: Prediction of Subarachnoid Hemorrhage and Role in Clinical Heterogeneity
BACKGROUND: Recently, common genetic risk factors for intracranial aneurysm (IA) and aneurysmal subarachnoid hemorrhage (ASAH) were found to explain a large amount of disease heritability and therefore have potential to be used for genetic risk prediction. We constructed a genetic risk score to (1) predict ASAH incidence and IA presence (combined set of unruptured IA and ASAH) and (2) assess its association with patient characteristics. METHODS: A genetic risk score incorporating genetic association data for IA and 17 traits related to IA (so-called metaGRS) was created using 1161 IA cases and 407 392 controls from the UK Biobank population study. The metaGRS was validated in combination with risk factors blood pressure, sex, and smoking in 828 IA cases and 68 568 controls from the Nordic HUNT population study. Furthermore, we assessed association between the metaGRS and patient characteristics in a cohort of 5560 IA patients. RESULTS: Per SD increase of metaGRS, the hazard ratio for ASAH incidence was 1.34 (95% CI, 1.20-1.51) and the odds ratio for IA presence 1.09 (95% CI, 1.01-1.18). Upon including the metaGRS on top of clinical risk factors, the concordance index to predict ASAH hazard increased from 0.63 (95% CI, 0.59-0.67) to 0.65 (95% CI, 0.62-0.69), while prediction of IA presence did not improve. The metaGRS was statistically significantly associated with age at ASAH (β=-4.82×10-3 per year [95% CI, -6.49×10-3 to -3.14×10-3]; P=1.82×10-8), and location of IA at the internal carotid artery (odds ratio=0.92 [95% CI, 0.86-0.98]; P=0.0041). CONCLUSIONS: The metaGRS was predictive of ASAH incidence, although with limited added value over clinical risk factors. The metaGRS was not predictive of IA presence. Therefore, we do not recommend using this metaGRS in daily clinical care. Genetic risk does partly explain the clinical heterogeneity of IA warranting prioritization of clinical heterogeneity in future genetic prediction studies of IA and ASAH
Genome-wide association study of intracranial aneurysms identifies 17 risk loci and genetic overlap with clinical risk factors (vol 52, pg 1303, 2020): Genome-wide association study of intracranial aneurysms identifies 17 risk loci and genetic overlap with clinical risk factors (Nature Genetics, (2020), 52, 12, (1303-1313), 10.1038/s41588-020-00725-7)
In the version of this article initially published, the following statement was missing from the Acknowledgements: “We are grateful to the GenoBiRD core facility (Biogenouest), the Clinical Investigation Center (INSERM CIC1413) and the Center of Biological Resources in Nantes (BB-0033-00040; CHU Nantes, France) for their assistance in managing and genotyping the ICAN and PREGO biobanks. R.R. was supported by the French Regional Council of Pays-de-la-Loire (VaCaRMe program) and the Agence Nationale de la Recherche (ANR-15-CE17-0008-01 to G.L). H.D. and R.B. were supported by the French Ministry of Health (clinical trial NCT02848495 to H.D.), the Genavie Foundation, the Société Française de Radiologie and the Société Française de Neuroradiologie.” The error has been corrected in the HTML and PDF versions of the article. *Lists of authors and their affiliations appear online
Genome-wide association study of intracranial aneurysms identifies 17 risk loci and genetic overlap with clinical risk factors
Rupture of an intracranial aneurysm leads to subarachnoid hemorrhage, a severe type of stroke. To discover new risk loci and the genetic architecture of intracranial aneurysms, we performed a cross-ancestry, genome-wide association study in 10,754 cases and 306,882 controls of European and East Asian ancestry. We discovered 17 risk loci, 11 of which are new. We reveal a polygenic architecture and explain over half of the disease heritability. We show a high genetic correlation between ruptured and unruptured intracranial aneurysms. We also find a suggestive role for endothelial cells by using gene mapping and heritability enrichment. Drug-target enrichment shows pleiotropy between intracranial aneurysms and antiepileptic and sex hormone drugs, providing insights into intracranial aneurysm pathophysiology. Finally, genetic risks for smoking and high blood pressure, the two main clinical risk factors, play important roles in intracranial aneurysm risk, and drive most of the genetic correlation between intracranial aneurysms and other cerebrovascular traits
Characteristics and outcomes of patients with multiple cervical artery dissection.
Little is known about factors contributing to multiple rather than single cervical artery dissections (CeAD) and their associated prognosis.Journal ArticleSCOPUS: ar.jinfo:eu-repo/semantics/publishe
Antiplatelets versus anticoagulation in cervical artery dissection - a review.
17siopenopenS.T. ENGELTER; T. BRANDT; S. DEBETTE; V. CASO; C. LICHY; A. PEZZINI; S. ABBOUD; A. BERSANO; R. DITTRICH; C. GROND-GINSBACH; I. HAUSER; M. KLOSS; A. GRAU; T. TATLISUMAK; D. LEYS; P.A. LYRER; FOR THE CERVICAL ARTERY DISSECTION IN ISCHEMIC STROKE PATIENTS CADISP STUDY GROUPS. T., Engelter; T., Brandt; S., Debette; V., Caso; C., Lichy; Pezzini, Alessandro; S., Abboud; A., Bersano; R., Dittrich; C., GROND GINSBACH; I., Hauser; M., Kloss; A., Grau; T., Tatlisumak; D., Leys; P. A., Lyrer; FOR THE CERVICAL ARTERY DISSECTION IN ISCHEMIC STROKE PATIENTS CADISP STUDY, Grou
Association of vascular risk factors with cervical artery dissection and ischemic stroke in young adults.
Genetic imbalance in patients with cervical artery dissection
BACKGROUND: Genetic and environmental risk factors are assumed to contribute to the susceptibility to cervical artery dissection (CeAD). To explore the role of genetic imbalance in the etiology of CeAD, copy number variants (CNVs) were identified in high-density microarrays samples from the multicenter CADISP (Cervical Artery Dissection and Ischemic Stroke Patients) study and from control subjects from the CADISP study and the German PopGen biobank. Microarray data from 833 CeAD patients and 2040 control subjects (565 subjects with ischemic stroke due to causes different from CeAD and 1475 disease-free individuals) were analyzed. Rare genic CNVs were equally frequent in CeAD-patients (16.4%; n=137) and in control subjects (17.0%; n=346) but differed with respect to their genetic content. Compared to control subjects, CNVs from CeAD patients were enriched for genes associated with muscle organ development and cell differentiation, which suggests a possible association with arterial development. CNVs affecting cardiovascular system development were more common in CeAD patients than in control subjects (p=0.003; odds ratio (OR) =2.5; 95% confidence interval (95% CI) =1.4-4.5) and more common in patients with a familial history of CeAD than in those with sporadic CeAD (p=0.036; OR=11.2; 95% CI=1.2-107). CONCLUSION: The findings suggest that rare genetic imbalance affecting cardiovascular system development may contribute to the risk of CeAD. Validation of these findings in independent study populations is warranted
Genetic Risk Score for Intracranial Aneurysms : Prediction of Subarachnoid Hemorrhage and Role in Clinical Heterogeneity
Background: Recently, common genetic risk factors for intracranial aneurysm (IA) and aneurysmal subarachnoid hemorrhage (ASAH) were found to explain a large amount of disease heritability and therefore have potential to be used for genetic risk prediction. We constructed a genetic risk score to (1) predict ASAH incidence and IA presence (combined set of unruptured IA and ASAH) and (2) assess its association with patient characteristics. Methods: A genetic risk score incorporating genetic association data for IA and 17 traits related to IA (so-called metaGRS) was created using 1161 IA cases and 407 392 controls from the UK Biobank population study. The metaGRS was validated in combination with risk factors blood pressure, sex, and smoking in 828 IA cases and 68 568 controls from the Nordic HUNT population study. Furthermore, we assessed association between the metaGRS and patient characteristics in a cohort of 5560 IA patients. Results: Per SD increase of metaGRS, the hazard ratio for ASAH incidence was 1.34 (95% CI, 1.20-1.51) and the odds ratio for IA presence 1.09 (95% CI, 1.01-1.18). Upon including the metaGRS on top of clinical risk factors, the concordance index to predict ASAH hazard increased from 0.63 (95% CI, 0.59-0.67) to 0.65 (95% CI, 0.62-0.69), while prediction of IA presence did not improve. The metaGRS was statistically significantly associated with age at ASAH (β=-4.82×10-3per year [95% CI, -6.49×10-3to -3.14×10-3]; P=1.82×10-8), and location of IA at the internal carotid artery (odds ratio=0.92 [95% CI, 0.86-0.98]; P=0.0041). Conclusions: The metaGRS was predictive of ASAH incidence, although with limited added value over clinical risk factors. The metaGRS was not predictive of IA presence. Therefore, we do not recommend using this metaGRS in daily clinical care. Genetic risk does partly explain the clinical heterogeneity of IA warranting prioritization of clinical heterogeneity in future genetic prediction studies of IA and ASAH.Peer reviewe
Genome-wide association study of intracranial aneurysms identifies 17 risk loci and genetic overlap with clinical risk factors
Rupture of an intracranial aneurysm leads to subarachnoid hemorrhage, a severe type of stroke. To discover new risk loci and the genetic architecture of intracranial aneurysms, we performed a cross-ancestry, genome-wide association study in 10,754 cases and 306,882 controls of European and East Asian ancestry. We discovered 17 risk loci, 11 of which are new. We reveal a polygenic architecture and explain over half of the disease heritability. We show a high genetic correlation between ruptured and unruptured intracranial aneurysms. We also find a suggestive role for endothelial cells by using gene mapping and heritability enrichment. Drug-target enrichment shows pleiotropy between intracranial aneurysms and antiepileptic and sex hormone drugs, providing insights into intracranial aneurysm pathophysiology. Finally, genetic risks for smoking and high blood pressure, the two main clinical risk factors, play important roles in intracranial aneurysm risk, and drive most of the genetic correlation between intracranial aneurysms and other cerebrovascular traits.</p
