740 research outputs found
Dynamics of topological defects in a spiral: a scenario for the spin-glass phase of cuprates
We propose that the dissipative dynamics of topological defects in a spiral
state is responsible for the transport properties in the spin-glass phase of
cuprates. Using the collective-coordinate method, we show that topological
defects are coupled to a bath of magnetic excitations. By integrating out the
bath degrees of freedom, we find that the dynamical properties of the
topological defects are dissipative. The calculated damping matrix is related
to the in-plane resistivity, which exhibits an anisotropy and linear
temperature dependence in agreement with experimental data.Comment: 4 pages, as publishe
Wigner Distribution Function Approach to Dissipative Problems in Quantum Mechanics with emphasis on Decoherence and Measurement Theory
We first review the usefulness of the Wigner distribution functions (WDF),
associated with Lindblad and pre-master equations, for analyzing a host of
problems in Quantum Optics where dissipation plays a major role, an arena where
weak coupling and long-time approximations are valid. However, we also show
their limitations for the discussion of decoherence, which is generally a
short-time phenomenon with decay rates typically much smaller than typical
dissipative decay rates. We discuss two approaches to the problem both of which
use a quantum Langevin equation (QLE) as a starting-point: (a) use of a reduced
WDF but in the context of an exact master equation (b) use of a WDF for the
complete system corresponding to entanglement at all times
Quantification of Phl p5 aeroallergen from outdoor air samples using an improved ELISA method
airborn pollen quantification in outdoor air sample
Quantum measurement and decoherence
Distribution functions defined in accord with the quantum theory of
measurement are combined with results obtained from the quantum Langevin
equation to discuss decoherence in quantum Brownian motion. Closed form
expressions for wave packet spreading and the attenuation of coherence of a
pair of wave packets are obtained. The results are exact within the context of
linear passive dissipation. It is shown that, contrary to widely accepted
current belief, decoherence can occur at high temperature in the absence of
dissipation. Expressions for the decoherence time with and without dissipation
are obtained that differ from those appearing in earlier discussions
Zero-Point Fluctuations and the Quenching of the Persistent Current in Normal Metal Rings
The ground state of a phase-coherent mesoscopic system is sensitive to its
environment. We investigate the persistent current of a ring with a quantum dot
which is capacitively coupled to an external circuit with a dissipative
impedance. At zero temperature, zero-point quantum fluctuations lead to a
strong suppression of the persistent current with decreasing external
impedance. We emphasize the role of displacement currents in the dynamical
fluctuations of the persistent current and show that with decreasing external
impedance the fluctuations exceed the average persistent current.Comment: 4 pages, 2 eps figure
Current fluctuations in a single tunnel junction
We study noise spectra of currents through a tunnel junction in weak
tunneling limit. We introduce effective capacitance to take into account the
interaction effect and explicitly incorporate the electromagnetic environment
of the junction into the formulation. We study the effect of charging energy
and macroscopic environment on noise spectra. We calculate current fluctuations
at tunneling barrier and fluctuations measured at leads. It is shown that two
fluctuations have different noise spectra and the relation between them is
nontrivial. We provide an explanation for the origin of the difference.
Experimental implications are discussed.Comment: 25 pages, Revtex 3.
Quantum M\"{u}nchhausen effect in tunneling
It is demonstrated that radiative corrections increase tunneling probability
of a charged particle
Quantum Fluctuations in Josephson Junction Comparators
We have developed a method for calculation of quantum fluctuation effects, in
particular of the uncertainty zone developing at the potential curvature sign
inversion, for a damped harmonic oscillator with arbitrary time dependence of
frequency and for arbitrary temperature, within the Caldeira-Leggett model. The
method has been applied to the calculation of the gray zone width Delta Ix of
Josephson-junction balanced comparators driven by a specially designed
low-impedance RSFQ circuit. The calculated temperature dependence of Delta Ix
in the range 1.5 to 4.2K is in a virtually perfect agreement with experimental
data for Nb-trilayer comparators with critical current densities of 1.0 and 5.5
kA/cm^2, without any fitting parameters.Comment: 4 pages, 4 figures, submitted to Physical Review Letter
Dynamics of a Simple Quantum System in a Complex Environment
We present a theory for the dynamical evolution of a quantum system coupled
to a complex many-body intrinsic system/environment. By modelling the intrinsic
many-body system with parametric random matrices, we study the types of
effective stochastic models which emerge from random matrix theory. Using the
Feynman-Vernon path integral formalism, we derive the influence functional and
obtain either analytical or numerical solutions for the time evolution of the
entire quantum system. We discuss thoroughly the structure of the solutions for
some representative cases and make connections to well known limiting results,
particularly to Brownian motion, Kramers classical limit and the
Caldeira-Leggett approach.Comment: 41 pages and 12 figures in revte
Magnetization Relaxation via Quantum and Classical Vortex Motion in a Bose Glass Superconductor
I show that in Bose Glass superconductor with high and at low the
magnetization relaxation (S), dominated by quantum tunneling, is , which crosses over to the conventional classical rate at
higher and lower , with the crossover . I argue
that due to interactions between flux lines there exist three relaxation
regimes, depending on whether ,
corresponding to Strongly-pinned Bose Glass (SBG) with large , Mott
Insulator (MI) with vanishing S, and Weakly-pinned Bose Glass (WBG)
characterized by small . I discuss the effects of interactions on
and focus attention on the recent experiment which is consistently described by
the theory.Comment: 4 pages, self-unpacking uuencoded compressed postscript file with
figures already inside text; to appear in Phys. Rev. Lett.(1995
- …
