18,979 research outputs found

    Axion Gauge Field Inflation and Gravitational Leptogenesis: A Lower Bound on B Modes from the Matter-Antimatter Asymmetry of the Universe

    Full text link
    We present a toy model of an axion gauge field inflation scenario that yields viable density and gravitational wave spectra. The scenario consists of an axionic inflaton in a steep potential that is effectively flattened by a coupling to a collection of non-Abelian gauge fields. The model predicts a blue-tilted gravitational wave spectrum that is dominated by one circular polarization, resulting in unique observational targets for cosmic microwave background and gravitational wave experiments. The handedness of the gravitational wave spectrum is incorporated in a model of leptogenesis through the axial-gravitational anomaly; assuming electroweak sphaeleron processes convert the lepton asymmetry into baryons, we predict an approximate lower bound on the tensor-to-scalar ratio r ~ 3-4e-2 for models that also explain the matter-antimatter asymmetry of the Universe.Comment: 18 pages, 7 figures. extended discussion of calculations. added references. clarified figures. match published versio

    Lower Limit to the Scale of an Effective Quantum Theory of Gravitation

    Get PDF
    An effective quantum theory of gravitation in which gravity weakens at energies higher than ~10^-3 eV is one way to accommodate the apparent smallness of the cosmological constant. Such a theory predicts departures from the Newtonian inverse-square force law on distances below ~0.05 mm. However, it is shown that this modification also leads to changes in the long-range behavior of gravity and is inconsistent with observed gravitational lenses

    The Limits of Quintessence

    Get PDF
    We present evidence that the simplest particle-physics scalar-field models of dynamical dark energy can be separated into distinct behaviors based on the acceleration or deceleration of the field as it evolves down its potential towards a zero minimum. We show that these models occupy narrow regions in the phase-plane of w and w', the dark energy equation-of-state and its time-derivative in units of the Hubble time. Restricting an energy scale of the dark energy microphysics limits how closely a scalar field can resemble a cosmological constant. These results, indicating a desired measurement resolution of order \sigma(w')\approx (1+w), define firm targets for observational tests of the physics of dark energy.Comment: 4 pages, 2 figure

    Spectral Distortion in a Radially Inhomogeneous Cosmology

    Get PDF
    The spectral distortion of the cosmic microwave background blackbody spectrum in a radially inhomogeneous spacetime, designed to exactly reproduce a LambdaCDM expansion history along the past light cone, is shown to exceed the upper bound established by COBE-FIRAS by a factor of approximately 3700. This simple observational test helps uncover a slew of pathological features that lie hidden inside the past light cone, including a radially contracting phase at decoupling and, if followed to its logical extreme, a naked singularity at the radially inhomogeneous Big Bang.Comment: 16 pages, 8 figures (added references and clarified discussion; some numbers revised

    LISA For Cosmologists: Calculating The Signal-To-Noise Ratio For Stochastic And Deterministic Sources

    Get PDF
    We present the steps to forecast the sensitivity of the Laser Interferometer Space Antenna (LISA) to both a stochastic gravitational wave background and deterministic wave sources. We show how to use these expressions to estimate the precision with which LISA can determine parameters associated with these sources. Tools are included to enable easy calculation of the signal-to-noise ratio and draw sensitivity curves. Benchmark values are given for easy comparison and checking of methods in the case of three worked examples. The first benchmark is the threshold stochastic gravitational wave background ΩGWh2 that LISA can observe. The second is the signal-to-noise ratio that LISA would observe for a binary black hole system identical to GW150914, radiating four years before merger. The third is the case of a monotone source, such as a binary that is far from merger

    LISA For Cosmologists: Calculating The Signal-To-Noise Ratio For Stochastic And Deterministic Sources

    Get PDF
    We present the steps to forecast the sensitivity of the Laser Interferometer Space Antenna (LISA) to both a stochastic gravitational wave background and deterministic wave sources. We show how to use these expressions to estimate the precision with which LISA can determine parameters associated with these sources. Tools are included to enable easy calculation of the signal-to-noise ratio and draw sensitivity curves. Benchmark values are given for easy comparison and checking of methods in the case of three worked examples. The first benchmark is the threshold stochastic gravitational wave background ΩGWh2 that LISA can observe. The second is the signal-to-noise ratio that LISA would observe for a binary black hole system identical to GW150914, radiating four years before merger. The third is the case of a monotone source, such as a binary that is far from merger

    Towards a future singularity?

    Full text link
    We discuss whether the future extrapolation of the present cosmological state may lead to a singularity even in case of "conventional" (negative) pressure of the dark energy field, namely w=p/ρ1w=p/\rho \geq -1. The discussion is based on an often neglected aspect of scalar-tensor models of gravity: the fact that different test particles may follow the geodesics of different metric frames, and the need for a frame-independent regularization of curvature singularities.Comment: 8 pages. Essay written for the "2004 Awards for Essays on Gravitation" (Gravity Research Foundation, Wellesley Hills, MA, USA), and selected for "Honorable Mention

    A Muslim Perspective of Leadership – Insights from Oman

    Get PDF
    This paper presents a Muslim perspective of leadership as viewed from observing leaders in Muscat, Oman – the capital city of the Middle East country that has grown at the rate of just under 4% per year since 2000 and is awash with residents from places throughout the world. With this rate of growth and rich diversity, leadership designed to make an equitable impact is required to govern

    Second-order weak lensing from modified gravity

    Get PDF
    We explore the sensitivity of weak gravitational lensing to second-order corrections to the spacetime metric within a cosmological adaptation of the parameterized post-Newtonian framework. Whereas one might expect nonlinearities of the gravitational field to introduce non-Gaussianity into the statistics of the lensing convergence field, we show that such corrections are actually always small within a broad class of scalar-tensor theories of gravity. We show this by first computing the weak lensing convergence within our parameterized framework to second order in the gravitational potential, and then computing the relevant post-Newtonian parameters for scalar-tensor gravity theories. In doing so we show that this potential systematic factor is generically negligible, thus clearing the way for weak lensing to provide a direct tracer of mass on cosmological scales for a wide class of gravity theories despite uncertainties in the precise nature of the departures from general relativity.Comment: 13 pages, 1 figure; v2: minor edits to match the PRD accepted versio
    corecore