1 research outputs found

    Combinatorics of BB-orbits and Bruhat--Chevalley order on involutions

    Full text link
    Let BB be the group of invertible upper-triangular complex n×nn\times n matrices, u\mathfrak{u} the space of upper-triangular complex matrices with zeroes on the diagonal and u\mathfrak{u}^* its dual space. The group BB acts on u\mathfrak{u}^* by (g.f)(x)=f(gxg1)(g.f)(x)=f(gxg^{-1}), gBg\in B, fuf\in\mathfrak{u}^*, xux\in\mathfrak{u}. To each involution σ\sigma in SnS_n, the symmetric group on nn letters, one can assign the BB-orbit Ωσu\Omega_{\sigma}\in\mathfrak{u}^*. We present a combinatorial description of the partial order on the set of involutions induced by the orbit closures. The answer is given in terms of rook placements and is dual to A. Melnikov's results on BB-orbits on u\mathfrak{u}. Using results of F. Incitti, we also prove that this partial order coincides with the restriction of the Bruhat--Chevalley order to the set of involutions.Comment: 27 page
    corecore