313 research outputs found
Derived categories of Burniat surfaces and exceptional collections
We construct an exceptional collection of maximal possible length
6 on any of the Burniat surfaces with , a 4-dimensional family of
surfaces of general type with . We also calculate the DG algebra of
endomorphisms of this collection and show that the subcategory generated by
this collection is the same for all Burniat surfaces.
The semiorthogonal complement of is an "almost
phantom" category: it has trivial Hochschild homology, and K_0(\mathcal
A)=\bZ_2^6.Comment: 15 pages, 1 figure; further remarks expande
Complete intersections: Moduli, Torelli, and good reduction
We study the arithmetic of complete intersections in projective space over
number fields. Our main results include arithmetic Torelli theorems and
versions of the Shafarevich conjecture, as proved for curves and abelian
varieties by Faltings. For example, we prove an analogue of the Shafarevich
conjecture for cubic and quartic threefolds and intersections of two quadrics.Comment: 37 pages. Typo's fixed. Expanded Section 2.
On special quadratic birational transformations of a projective space into a hypersurface
We study transformations as in the title with emphasis on those having smooth
connected base locus, called "special". In particular, we classify all special
quadratic birational maps into a quadric hypersurface whose inverse is given by
quadratic forms by showing that there are only four examples having general
hyperplane sections of Severi varieties as base loci.Comment: Accepted for publication in Rendiconti del Circolo Matematico di
Palerm
A Carleman-Picard approach for reconstructing zero-order coefficients in parabolic equations with limited data
We propose a globally convergent computational technique for the nonlinear
inverse problem of reconstructing the zero-order coefficient in a parabolic
equation using partial boundary data. This technique is called the "reduced
dimensional method". Initially, we use the polynomial-exponential basis to
approximate the inverse problem as a system of 1D nonlinear equations. We then
employ a Picard iteration based on the quasi-reversibility method and a
Carleman weight function. We will rigorously prove that the sequence derived
from this iteration converges to the accurate solution for that 1D system
without requesting a good initial guess of the true solution. The key tool for
the proof is a Carleman estimate. We will also show some numerical examples
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Mesorectal radiotherapy for early stage rectal cancer: A novel target volume
With the introduction of population-based bowel cancer screening, rectal cancer is diagnosed at earlier stages, yet standard treatment still requires the same extensive surgery that is used for more advanced stages. Organ preserving treatment is rapidly developing and is subject of investigation in numerous clinical trials. The STAR-TREC trial is an international, multi-centre randomised trial investigating organ preservation using (chemo)radiotherapy. Patients with small mrT1-3bN0V0M0 tumours are randomized between three arms: standard TME, organ preservation with SCRT or with CRT. In this trial, the clinical target volume has been tailored to the early staged disease of the included patients. This mesorectal irradiation volume includes the mesorectum and pre-sacral lymph nodes at the level of the tumour, two centimetres below and cranially up to the S2-3 interspace level. In contrast to conventional irradiation volumes, the lateral lymph nodes and the nodes along the superior rectal artery are excluded. As a result, the dose to the bowel, bladder, anal sphincter and the neurovascular plexus in the lower pelvis is substantially decreased, especially when combined with modern irradiation techniques, such as dynamic arc therapy. These lower doses are expected to lead to decreasing acute and late toxicity and beneficial functional outcomes. The implementation of this novel target volume will be accompanied by an extensive quality assurance program in the STAR-TREC trial. We describe the rationale behind the novel, mesorectal only radiotherapy treatment used in the STAR-TREC trial specifically tailored for early stage disease, with the goal of organ preservation
Measurement of the cross section for inclusive isolated-photon production in pp collisions at √s=13TeV using the ATLAS detector
Inclusive isolated-photon production in pp collisions at a centre-of-mass energy of 13TeVis studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 3.2fb−1. The cross section is measured as a function of the photon transverse energy above 125GeVin different regions of photon pseudorapidity. Next-to-leading-order perturbative QCD and Monte Carlo event-generator predictions are compared to the cross-section measurements and provide an adequate description of the data
EP-1748: Mesorectal-only irradiation for early stage rectal cancer: Target volumes and dose to organs at risk
Robust dose planning objectives for mesorectal radiotherapy of early stage rectal cancer – A multicentre dose planning study
Background and purpose
Organ preservation strategies are increasingly being explored for early rectal cancer. This requires revision of target volumes according to disease stage, as well as new guidelines for treatment planning. We conducted an international, multicentre dose planning study to develop robust planning objectives for modern radiotherapy of a novel mesorectal-only target volume, as implemented in the STAR-TReC trial (NCT02945566).
Materials and methods
The published literature was used to establish relevant dose levels for organ at risk (OAR) plan optimisation. Ten representative patients with early rectal cancer were identified. Treatment scans had mesorectal target volumes as well as bowel cavity, bladder and femoral heads outlined, and were circulated amongst the three participating institutions. Each institution produced plans for short course (SCRT, 5 × 5 Gy) and long course (LCRT, 25 × 2 Gy) treatment, using volumetric modulated arc therapy on different dose planning systems. Optimisation objectives for OARs were established by determining dose metric objectives achievable for ≥90% of plans.
Results
Sixty plans, all fulfilling target coverage criteria, were produced. The planning results and literature review suggested optimisation objectives for SCRT: V10Gy < 180 cm3, V18Gy < 110 cm3, V23Gy < 85 cm3 for bowel cavity; V21Gy < 15% and V25Gy < 5% for bladder; and V12.5Gy < 11% for femoral heads. Corresponding objectives for LCRT: V20Gy < 180 cm3, V30Gy < 130 cm3, V45Gy < 90 cm3 for bowel cavity; V35Gy < 22% and V50Gy < 7% for bladder; and V25Gy < 15% for femoral heads. Constraints were validated across all three institutions.
Conclusion
We utilized a multicentre planning study approach to develop robust planning objectives for mesorectal radiotherapy for early rectal cancer
- …
