11,612 research outputs found
Study of man pulling a cart on the moon
Metabolic cost evaluation of self-locomotion in simulated lunar gravity using space suits and carts including weight load and surface effect
Man's capability for self-locomotion on the moon. Phase 2 - Bungee simulator evaluation
Design and performance of suspension system for lunar gravity simulatio
Assessing optimal target populations for influenza vaccination programmes: an evidence synthesis and modelling study.
BACKGROUND: Influenza vaccine policies that maximise health benefit through efficient use of limited resources are needed. Generally, influenza vaccination programmes have targeted individuals 65 y and over and those at risk, according to World Health Organization recommendations. We developed methods to synthesise the multiplicity of surveillance datasets in order to evaluate how changing target populations in the seasonal vaccination programme would affect infection rate and mortality. METHODS AND FINDINGS: Using a contemporary evidence-synthesis approach, we use virological, clinical, epidemiological, and behavioural data to develop an age- and risk-stratified transmission model that reproduces the strain-specific behaviour of influenza over 14 seasons in England and Wales, having accounted for the vaccination uptake over this period. We estimate the reduction in infections and deaths achieved by the historical programme compared with no vaccination, and the reduction had different policies been in place over the period. We find that the current programme has averted 0.39 (95% credible interval 0.34-0.45) infections per dose of vaccine and 1.74 (1.16-3.02) deaths per 1,000 doses. Targeting transmitters by extending the current programme to 5-16-y-old children would increase the efficiency of the total programme, resulting in an overall reduction of 0.70 (0.52-0.81) infections per dose and 1.95 (1.28-3.39) deaths per 1,000 doses. In comparison, choosing the next group most at risk (50-64-y-olds) would prevent only 0.43 (0.35-0.52) infections per dose and 1.77 (1.15-3.14) deaths per 1,000 doses. CONCLUSIONS: This study proposes a framework to integrate influenza surveillance data into transmission models. Application to data from England and Wales confirms the role of children as key infection spreaders. The most efficient use of vaccine to reduce overall influenza morbidity and mortality is thus to target children in addition to older adults. Please see later in the article for the Editors' Summary
Long-duration exercise at moderate work loads
Metabolic effects of long duration exercise at moderate work loads including tables of heart rate, rectal temperature, minute volume, water balance, and respiratory quotien
Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor
We demonstrate an all-optical delay line in hot cesium vapor that tunably
delays 275 ps input pulses up to 6.8 ns and 740 input ps pulses up to 59 ns
(group index of approximately 200) with little pulse distortion. The delay is
made tunable with a fast reconfiguration time (hundreds of ns) by optically
pumping out of the atomic ground states.Comment: 4 pages, 6 figure
Gravitomagnetism in Metric Theories: Analysis of Earth Satellites Results, and its Coupling with Spin
Employing the PPN formalism the gravitomagnetic field in different metric
theories is considered in the analysis of the LAGEOS results. It will be shown
that there are several models that predict exactly the same effect that general
relativity comprises. In other words, these Earth satellites results can be
taken as experimental evidence that the orbital angular momentum of a body does
indeed generate space--time geometry, notwithstanding they do not endow general
relativity with an outstanding status among metric theories. Additionally the
coupling spin--gravitomagnetic field is analyzed with the introduction of the
Rabi transitions that this field produces on a quantum system with spin 1/2.
Afterwards, a continuous measurement of the energy of this system is
introduced, and the consequences upon the corresponding probabilities of the
involved gravitomagnetic field will be obtained. Finally, it will be proved
that these proposals allows us, not only to confront against future experiments
the usual assumption of the coupling spin--gravotimagnetism, but also to
measure some PPN parameters and to obtain functional dependences among them.Comment: 10 page
Critical points in a relativistic bosonic gas induced by the quantum structure of spacetime
It is well known that phase transitions arise if the interaction among
particles embodies an attractive as well as a repulsive contribution. In this
work it will be shown that the breakdown of Lorentz symmetry, characterized
through a deformation in the relation dispersion, plus the bosonic statistics
predict the emergence of critical points. In other words, in some quantum
gravity models the structure of spacetime implies the emergence of critical
points even when no interaction among the particle has been considered.Comment: 5 pages, no figure
Recommended from our members
Patient-derived iPSCs show premature neural differentiation and neuron type-specific phenotypes relevant to neurodevelopment.
Ras/MAPK pathway signaling is a major participant in neurodevelopment, and evidence suggests that BRAF, a key Ras signal mediator, influences human behavior. We studied the role of the mutation BRAFQ257R, the most common cause of cardiofaciocutaneous syndrome (CFC), in an induced pluripotent stem cell (iPSC)-derived model of human neurodevelopment. In iPSC-derived neuronal cultures from CFC subjects, we observed decreased p-AKT and p-ERK1/2 compared to controls, as well as a depleted neural progenitor pool and rapid neuronal maturation. Pharmacological PI3K/AKT pathway manipulation recapitulated cellular phenotypes in control cells and attenuated them in CFC cells. CFC cultures displayed altered cellular subtype ratios and increased intrinsic excitability. Moreover, in CFC cells, Ras/MAPK pathway activation and morphological abnormalities exhibited cell subtype-specific differences. Our results highlight the importance of exploring specific cellular subtypes and of using iPSC models to reveal relevant human-specific neurodevelopmental events
Quantum Measurements and the kappa--Poincare Group
The possible description of the vacuum of quantum gravity through the so
called kappa--Poincare group is analyzed considering some of the consequences
of this symmetry in the path integral formulation of nonrelativistic quantum
theory. This study is carried out with two cases, firstly, a free particle, and
finally, the situation of a particle immersed in a homogeneous gravitational
field. It will be shown that the kappa--Poincare group implies the loss of some
of the basic properties associated to Feynman's path integral. For instance,
loss of the group characteristic related to the time dependence of the
evolution operator, or the breakdown of the composition law for amplitudes of
events occurring successively in time. Additionally some similarities between
the present idea and the so called restricted path integral formalism will be
underlined. These analogies advocate the claim that if the kappa--Poincare
group contains some of the physical information of the quantum gravity vacuum,
then this vacuum could entail decoherence. This last result will also allow us
to consider the possibility of analyzing the continuous measurement problem of
quantum theory from a group--theoretical point of view, but now taking into
account the kappa--Poincare symmetries.Comment: Accepted in General Relativity and Gravitation. Dedicated to Alberto
Garcia on the occasion of his 60th. birthda
Immunosuppressants and risk of Parkinson disease
We performed a population-based case-control study of United States Medicare beneficiaries age 60-90 in 2009 with prescription data (48,295 incident Parkinson disease cases and 52,324 controls) to examine the risk of Parkinson disease in relation to use of immunosuppressants. Inosine monophosphate dehydrogenase inhibitors (relative risk = 0.64; 95% confidence interval 0.51-0.79) and corticosteroids (relative risk = 0.80; 95% confidence interval 0.77-0.83) were both associated with a lower risk of Parkinson disease. Inverse associations for both remained after applying a 12-month exposure lag. Overall, this study provides evidence that use of corticosteroids and inosine monophosphate dehydrogenase inhibitors might lower the risk of Parkinson disease
- …
