516 research outputs found
Comparison of charge modulations in LaBaCuO and YBaCuO
A charge modulation has recently been reported in (Y,Nd)BaCuO
[Ghiringhelli {\em et al.} Science 337, 821 (2013)]. Here we report Cu
edge soft x-ray scattering studies comparing the lattice modulation associated
with the charge modulation in YBaCuO with that associated with
the well known charge and spin stripe order in LaBaCuO.
We find that the correlation length in the CuO plane is isotropic in both
cases, and is \AA for LaBaCuO and \AA for YBaCuO. Assuming weak inter-planar correlations of
the charge ordering in both compounds, we conclude that the order parameters of
the lattice modulations in LaBaCuO and
YBaCuO are of the same order of magnitude.Comment: 3 pages, 2 figure
Lattice dynamical signature of charge density wave formation in underdoped YBa2Cu3O6+x
We report a detailed Raman scattering study of the lattice dynamics in
detwinned single crystals of the underdoped high temperature superconductor
YBa2Cu3O6+x (x=0.75, 0.6, 0.55 and 0.45). Whereas at room temperature the
phonon spectra of these compounds are similar to that of optimally doped
YBa2Cu3O6.99, additional Raman-active modes appear upon cooling below ~170-200
K in underdoped crystals. The temperature dependence of these new features
indicates that they are associated with the incommensurate charge density wave
state recently discovered using synchrotron x-ray scattering techniques on the
same single crystals. Raman scattering has thus the potential to explore the
evolution of this state under extreme conditions.Comment: 12 pages, 11 figure
Quantum Discord and entropic measures of quantum correlations: Optimization and behavior in finite spin chains
We discuss a generalization of the conditional entropy and one-way
information deficit in quantum systems, based on general entropic forms. The
formalism allows to consider simple entropic forms for which a closed
evaluation of the associated optimization problem in qudit-qubit systems is
shown to become feasible, allowing to approximate that of the quantum discord.
As application, we examine quantum correlations of spin pairs in the exact
ground state of finite spin chains in a magnetic field through the quantum
discord and information deficit. While these quantities show a similar
behavior, their optimizing measurements exhibit significant differences, which
can be understood and predicted through the previous approximations. The
remarkable behavior of these quantities in the vicinity of transverse and
non-transverse factorizing fields is also discussed.Comment: 10 pages, 3 figure
CdV2O4: A rare example of a collinear multiferroic spinel
By studying the dielectric properties of the geometrically frustrated spinel
CdV2O4, we observe ferroelectricity developing at the transition into the
collinear antiferromagnetic ground state. In this multiferroic spinel,
ferroelectricity is driven by local magnetostriction and not by the more common
scenario of spiral magnetism. The experimental findings are corroborated by
ab-initio calculations of the electric polarization and the underlying spin and
orbital order. The results point towards a charge rearrangement due to
dimerization, where electronic correlations and the proximity to the
insulator-metal transition play an important role.Comment: 4+ pages, 3 figure
Momentum-dependent charge correlations in YBaCuO superconductors probed by resonant x-ray scattering: Evidence for three competing phases
We have used resonant x-ray scattering to determine the momentum dependent
charge correlations in YBaCuO samples with highly ordered
chain arrays of oxygen acceptors (ortho-II structure). The results reveal
nearly critical, biaxial charge density wave (CDW) correlations at in-plane
wave vectors (0.315, 0) and (0, 0.325). The corresponding scattering intensity
exhibits a strong uniaxial anisotropy. The CDW amplitude and correlation length
are enhanced as superconductivity is weakened by an external magnetic field.
Analogous experiments were carried out on a YBaCuO crystal with
a dilute concentration of spinless (Zn) impurities, which had earlier been
shown to nucleate incommensurate magnetic order. Compared to pristine crystals
with the same doping level, the CDW amplitude and correlation length were found
to be strongly reduced. These results indicate a three-phase competition
between spin-modulated, charge-modulated, and superconducting states in
underdoped YBaCuO.Comment: 6 pages, 3 figures revised version, to appear in Phys. Rev. Let
Effects of Transport Memory and Nonlinear Damping in a Generalized Fisher's Equation
Memory effects in transport require, for their incorporation into reaction
diffusion investigations, a generalization of traditional equations. The
well-known Fisher's equation, which combines diffusion with a logistic
nonlinearity, is generalized to include memory effects and traveling wave
solutions of the equation are found. Comparison is made with alternate
generalization procedures.Comment: 6 pages, 4 figures, RevTeX
Molecular mechanism of Gαi activation by non-GPCR proteins with a Gα-Binding and Activating motif
Heterotrimeric G proteins are quintessential signalling switches activated by nucleotide exchange on Gα. Although activation is predominantly carried out by G-protein-coupled receptors (GPCRs), non-receptor guanine-nucleotide exchange factors (GEFs) have emerged as critical signalling molecules and therapeutic targets. Here we characterize the molecular mechanism of G-protein activation by a family of non-receptor GEFs containing a Gα-binding and -activating (GBA) motif. We combine NMR spectroscopy, computational modelling and biochemistry to map changes in Gα caused by binding of GBA proteins with residue-level resolution. We find that the GBA motif binds to the SwitchII/α3 cleft of Gα and induces changes in the G-1/P-loop and G-2 boxes (involved in phosphate binding), but not in the G-4/G-5 boxes (guanine binding). Our findings reveal that G-protein-binding and activation mechanisms are fundamentally different between GBA proteins and GPCRs, and that GEF-mediated perturbation of nucleotide phosphate binding is sufficient for Gα activation
Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu3O(6+x)
There are increasing indications that superconductivity competes with other
orders in cuprate superconductors, but obtaining direct evidence with
bulk-sensitive probes is challenging. We have used resonant soft x-ray
scattering to identify two-dimensional charge fluctuations with an
incommensurate periodicity of lattice units in the copper-oxide
planes of the superconductors (Y,Nd)BaCuO with hole
concentrations per planar Cu ion. The intensity and
correlation length of the fluctuation signal increase strongly upon cooling
down to the superconducting transition temperature, ; further cooling
below abruptly reverses the divergence of the charge correlations. In
combination with prior observations of a large gap in the spin excitation
spectrum, these data indicate an incipient charge-density-wave instability that
competes with superconductivity.Comment: to appear in Scienc
Information entropy as a measure of the quality of a nuclear density distribution
The information entropy of a nuclear density distribution is calculated for a
number of nuclei. Various phenomenological models for the density distribution
using different geometry are employed. Nuclear densities calculated within
various microscopic mean field approaches are also employed. It turns out that
the entropy increases on going from crude phenomenological models to more
sophisticated (microscopic) ones. It is concluded that the larger the
information entropy, the better the quality of the nuclear density
distribution. An alternative approach is also examined: the net information
content i.e. the sum of information entropies in position and momentum space
. It is indicated that is a maximum, when the best
fit to experimental data of the density and momentum distributions is attained.Comment: 12 pages, LaTex, no figures, Int. J. of Mod. Phys. E in pres
Hilbert-Schmidt Separability Probabilities and Noninformativity of Priors
The Horodecki family employed the Jaynes maximum-entropy principle, fitting
the mean (b_{1}) of the Bell-CHSH observable (B). This model was extended by
Rajagopal by incorporating the dispersion (\sigma_{1}^2) of the observable, and
by Canosa and Rossignoli, by generalizing the observable (B_{\alpha}). We
further extend the Horodecki one-parameter model in both these manners,
obtaining a three-parameter (b_{1},\sigma_{1}^2,\alpha) two-qubit model, for
which we find a highly interesting/intricate continuum (-\infty < \alpha <
\infty) of Hilbert-Schmidt (HS) separability probabilities -- in which, the
golden ratio is featured. Our model can be contrasted with the three-parameter
(b_{q}, \sigma_{q}^2,q) one of Abe and Rajagopal, which employs a
q(Tsallis)-parameter rather than , and has simply q-invariant HS
separability probabilities of 1/2. Our results emerge in a study initially
focused on embedding certain information metrics over the two-level quantum
systems into a q-framework. We find evidence that Srednicki's recently-stated
biasedness criterion for noninformative priors yields rankings of priors fully
consistent with an information-theoretic test of Clarke, previously applied to
quantum systems by Slater.Comment: 26 pages, 12 figure
- …
