516 research outputs found

    Comparison of charge modulations in La1.875_{1.875}Ba0.125_{0.125}CuO4_4 and YBa2_2Cu3_3O6.6_{6.6}

    Full text link
    A charge modulation has recently been reported in (Y,Nd)Ba2_2Cu3_3O6+x_{6+x} [Ghiringhelli {\em et al.} Science 337, 821 (2013)]. Here we report Cu L3L_3 edge soft x-ray scattering studies comparing the lattice modulation associated with the charge modulation in YBa2_2Cu3_3O6.6_{6.6} with that associated with the well known charge and spin stripe order in La1.875_{1.875}Ba0.125_{0.125}CuO4_4. We find that the correlation length in the CuO2_2 plane is isotropic in both cases, and is 259±9259 \pm 9 \AA for La1.875_{1.875}Ba0.125_{0.125}CuO4_4 and 55±1555 \pm 15 \AA for YBa2_2Cu3_3O6.6_{6.6}. Assuming weak inter-planar correlations of the charge ordering in both compounds, we conclude that the order parameters of the lattice modulations in La1.875_{1.875}Ba0.125_{0.125}CuO4_4 and YBa2_2Cu3_3O6.6_{6.6} are of the same order of magnitude.Comment: 3 pages, 2 figure

    Lattice dynamical signature of charge density wave formation in underdoped YBa2Cu3O6+x

    Full text link
    We report a detailed Raman scattering study of the lattice dynamics in detwinned single crystals of the underdoped high temperature superconductor YBa2Cu3O6+x (x=0.75, 0.6, 0.55 and 0.45). Whereas at room temperature the phonon spectra of these compounds are similar to that of optimally doped YBa2Cu3O6.99, additional Raman-active modes appear upon cooling below ~170-200 K in underdoped crystals. The temperature dependence of these new features indicates that they are associated with the incommensurate charge density wave state recently discovered using synchrotron x-ray scattering techniques on the same single crystals. Raman scattering has thus the potential to explore the evolution of this state under extreme conditions.Comment: 12 pages, 11 figure

    Quantum Discord and entropic measures of quantum correlations: Optimization and behavior in finite XYXY spin chains

    Get PDF
    We discuss a generalization of the conditional entropy and one-way information deficit in quantum systems, based on general entropic forms. The formalism allows to consider simple entropic forms for which a closed evaluation of the associated optimization problem in qudit-qubit systems is shown to become feasible, allowing to approximate that of the quantum discord. As application, we examine quantum correlations of spin pairs in the exact ground state of finite XYXY spin chains in a magnetic field through the quantum discord and information deficit. While these quantities show a similar behavior, their optimizing measurements exhibit significant differences, which can be understood and predicted through the previous approximations. The remarkable behavior of these quantities in the vicinity of transverse and non-transverse factorizing fields is also discussed.Comment: 10 pages, 3 figure

    CdV2O4: A rare example of a collinear multiferroic spinel

    Full text link
    By studying the dielectric properties of the geometrically frustrated spinel CdV2O4, we observe ferroelectricity developing at the transition into the collinear antiferromagnetic ground state. In this multiferroic spinel, ferroelectricity is driven by local magnetostriction and not by the more common scenario of spiral magnetism. The experimental findings are corroborated by ab-initio calculations of the electric polarization and the underlying spin and orbital order. The results point towards a charge rearrangement due to dimerization, where electronic correlations and the proximity to the insulator-metal transition play an important role.Comment: 4+ pages, 3 figure

    Momentum-dependent charge correlations in YBa2_2Cu3_3O6+δ_{6+\delta} superconductors probed by resonant x-ray scattering: Evidence for three competing phases

    Full text link
    We have used resonant x-ray scattering to determine the momentum dependent charge correlations in YBa2_2Cu3_3O6.55_{6.55} samples with highly ordered chain arrays of oxygen acceptors (ortho-II structure). The results reveal nearly critical, biaxial charge density wave (CDW) correlations at in-plane wave vectors (0.315, 0) and (0, 0.325). The corresponding scattering intensity exhibits a strong uniaxial anisotropy. The CDW amplitude and correlation length are enhanced as superconductivity is weakened by an external magnetic field. Analogous experiments were carried out on a YBa2_2Cu3_3O6.6_{6.6} crystal with a dilute concentration of spinless (Zn) impurities, which had earlier been shown to nucleate incommensurate magnetic order. Compared to pristine crystals with the same doping level, the CDW amplitude and correlation length were found to be strongly reduced. These results indicate a three-phase competition between spin-modulated, charge-modulated, and superconducting states in underdoped YBa2_2Cu3_3O6+δ_{6+\delta}.Comment: 6 pages, 3 figures revised version, to appear in Phys. Rev. Let

    Effects of Transport Memory and Nonlinear Damping in a Generalized Fisher's Equation

    Full text link
    Memory effects in transport require, for their incorporation into reaction diffusion investigations, a generalization of traditional equations. The well-known Fisher's equation, which combines diffusion with a logistic nonlinearity, is generalized to include memory effects and traveling wave solutions of the equation are found. Comparison is made with alternate generalization procedures.Comment: 6 pages, 4 figures, RevTeX

    Molecular mechanism of Gαi activation by non-GPCR proteins with a Gα-Binding and Activating motif

    Get PDF
    Heterotrimeric G proteins are quintessential signalling switches activated by nucleotide exchange on Gα. Although activation is predominantly carried out by G-protein-coupled receptors (GPCRs), non-receptor guanine-nucleotide exchange factors (GEFs) have emerged as critical signalling molecules and therapeutic targets. Here we characterize the molecular mechanism of G-protein activation by a family of non-receptor GEFs containing a Gα-binding and -activating (GBA) motif. We combine NMR spectroscopy, computational modelling and biochemistry to map changes in Gα caused by binding of GBA proteins with residue-level resolution. We find that the GBA motif binds to the SwitchII/α3 cleft of Gα and induces changes in the G-1/P-loop and G-2 boxes (involved in phosphate binding), but not in the G-4/G-5 boxes (guanine binding). Our findings reveal that G-protein-binding and activation mechanisms are fundamentally different between GBA proteins and GPCRs, and that GEF-mediated perturbation of nucleotide phosphate binding is sufficient for Gα activation

    Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu3O(6+x)

    Full text link
    There are increasing indications that superconductivity competes with other orders in cuprate superconductors, but obtaining direct evidence with bulk-sensitive probes is challenging. We have used resonant soft x-ray scattering to identify two-dimensional charge fluctuations with an incommensurate periodicity of 3.2\bf \sim 3.2 lattice units in the copper-oxide planes of the superconductors (Y,Nd)Ba2_2Cu3_3O6+x_{6+x} with hole concentrations 0.09p0.130.09 \leq p \leq 0.13 per planar Cu ion. The intensity and correlation length of the fluctuation signal increase strongly upon cooling down to the superconducting transition temperature, TcT_c; further cooling below TcT_c abruptly reverses the divergence of the charge correlations. In combination with prior observations of a large gap in the spin excitation spectrum, these data indicate an incipient charge-density-wave instability that competes with superconductivity.Comment: to appear in Scienc

    Information entropy as a measure of the quality of a nuclear density distribution

    Get PDF
    The information entropy of a nuclear density distribution is calculated for a number of nuclei. Various phenomenological models for the density distribution using different geometry are employed. Nuclear densities calculated within various microscopic mean field approaches are also employed. It turns out that the entropy increases on going from crude phenomenological models to more sophisticated (microscopic) ones. It is concluded that the larger the information entropy, the better the quality of the nuclear density distribution. An alternative approach is also examined: the net information content i.e. the sum of information entropies in position and momentum space Sr+SkS_{r}+S_{k}. It is indicated that Sr+SkS_{r}+S_{k} is a maximum, when the best fit to experimental data of the density and momentum distributions is attained.Comment: 12 pages, LaTex, no figures, Int. J. of Mod. Phys. E in pres

    Hilbert-Schmidt Separability Probabilities and Noninformativity of Priors

    Full text link
    The Horodecki family employed the Jaynes maximum-entropy principle, fitting the mean (b_{1}) of the Bell-CHSH observable (B). This model was extended by Rajagopal by incorporating the dispersion (\sigma_{1}^2) of the observable, and by Canosa and Rossignoli, by generalizing the observable (B_{\alpha}). We further extend the Horodecki one-parameter model in both these manners, obtaining a three-parameter (b_{1},\sigma_{1}^2,\alpha) two-qubit model, for which we find a highly interesting/intricate continuum (-\infty < \alpha < \infty) of Hilbert-Schmidt (HS) separability probabilities -- in which, the golden ratio is featured. Our model can be contrasted with the three-parameter (b_{q}, \sigma_{q}^2,q) one of Abe and Rajagopal, which employs a q(Tsallis)-parameter rather than α\alpha, and has simply q-invariant HS separability probabilities of 1/2. Our results emerge in a study initially focused on embedding certain information metrics over the two-level quantum systems into a q-framework. We find evidence that Srednicki's recently-stated biasedness criterion for noninformative priors yields rankings of priors fully consistent with an information-theoretic test of Clarke, previously applied to quantum systems by Slater.Comment: 26 pages, 12 figure
    corecore