3,693 research outputs found
A Tolman Surface Brightness Test for Universal Expansion, and the Evolution of Elliptical Galaxies in Distant Clusters
We use the intercept of the elliptical galaxy radius--surface brightness (SB)
relation at a fixed metric radius as the standard condition for the Tolman SB
test of the universal expansion. We use surface photometry in the optical and
near-IR of elliptical galaxies in Abell~2390 () and Abell~851
(), and compare them to the Coma cluster at . The
photometric data for each cluster are well-described by the Kormendy relation
, where in the optical and in the
near-IR. The scatter about this near-IR relation is only in
at the highest redshift, which is much smaller than at low redshifts,
suggesting a remarkable homogeneity of the cluster elliptical population at
. We use the intercept of these fixed-slope correlations at ~kpc (assuming ~km~s~Mpc, , and
, where the results are only weakly dependent on the cosmology) to
construct the Tolman SB test for these three clusters. The data are fully
consistent with universal expansion if we assume simple models of passive
evolution for elliptical galaxies, but are inconsistent with a non-expanding
geometry (the tired light cosmology) at the confidence level at
. These results suggest luminosity evolution in the restframe -band
of ~mag from to the present, and are consistent with
the ellipticals having formed at high redshift. The SB intercept in elliptical
galaxy correlations is thus a powerful tool for investigating models of their
evolution for significant lookback times.Comment: to appear in The Astrophysical Journal (Letters); 13 pages, including
3 Postscript figures and 1 table; uuencoded, compressed format; the paper is
also available in various formats from
http://astro.caltech.edu/~map/map.bibliography.refereed.htm
Uncovering Spiral Structure in Flocculent Galaxies
We present K'(2.1 micron) observations of four nearby flocculent spirals,
which clearly show low-level spiral structure and suggest that kiloparsec-scale
spiral structure is more prevalent in flocculent spirals than previously
supposed. In particular, the prototypical flocculent spiral NGC 5055 is shown
to have regular, two-arm spiral structure to a radius of 4 kpc in the near
infrared, with an arm-interarm contrast of 1.3. The spiral structure in all
four galaxies is weaker than that in grand design galaxies. Taken in unbarred
galaxies with no large, nearby companions, these data are consistent with the
modal theory of spiral density waves, which maintains that density waves are
intrinsic to the disk. As an alternative, mechanisms for driving spiral
structure with non-axisymmetric perturbers are also discussed. These
observations highlight the importance of near infrared imaging for exploring
the range of physical environments in which large-scale dynamical processes,
such as density waves, are important.Comment: 12 pages AASTeX; 3 compressed PS figures can be retrieved from
ftp://ftp.astro.umd.edu/pub/michele as file thornley.tar (1.6Mbytes).
Accepted to Ap.J. Letters.(Figures now also available here, and from
ftp://ftp.astro.umd.edu/pub/michele , in GIF format.
Ewing's sarcoma of the bone: ESMO Clinical Recommendations for diagnosis, treatment and follow-up
Computing Matveev's complexity via crystallization theory: the orientable case
By means of a slight modification of the notion of GM-complexity introduced in [Casali, M.R., Topol. Its Appl., 144: 201-209, 2004], the present paper performs a graph-theoretical approach to the computation of (Matveev's) complexity for closed orientable 3-manifolds. In particular, the existing crystallization catalogue C-28 available in [Lins, S., Knots and Everything 5, World Scientific, Singapore, 1995] is used to obtain upper bounds for the complexity of closed orientable 3-manifolds triangulated by at most 28 tetrahedra. The experimental results actually coincide with the exact values of complexity, for all but three elements. Moreover, in the case of at most 26 tetrahedra, the exact value of the complexity is shown to be always directly computable via crystallization theory
B3 0003+387: AGN Marked Large-Scale Structure at z=1.47?
We present evidence for a significant overdensity of red galaxies, as much as
a factor of 14 over comparable field samples, in the field of the z=1.47 radio
galaxy B3 0003+387. The colors and luminosities of the brightest red galaxies
are consistent with their being at z>0.8. The radio galaxy and one of the red
galaxies are separated by 5" and show some evidence of a possible interaction.
However, the red galaxies do not show any strong clustering around the radio
galaxy nor around any of the brighter red galaxies. The data suggest that we
are looking at a wall or sheet of galaxies, possibly associated with the radio
galaxy at z=1.47. Spectroscopic redshifts of these red galaxies will be
necessary to confirm this large-scale structure.Comment: 19 pages, 7 figures, LaTeX2e/AASTeX v5.0.2. The full photometric
catalog is included as a separate deluxetable file. To appear in the
Astronomical Journal (~Nov 00
Measurements and optimization of the light yield of a TeO crystal
Bolometers have proven to be good instruments to search for rare processes
because of their excellent energy resolution and their extremely low intrinsic
background. In this kind of detectors, the capability of discriminating alpha
particles from electrons represents an important aspect for the background
reduction. One possibility for obtaining such a discrimination is provided by
the detection of the Cherenkov light which, at the low energies of the natural
radioactivity, is only emitted by electrons. This paper describes the method
developed to evaluate the amount of light produced by a crystal of TeO when
hit by a 511 keV photon. The experimental measurements and the results of a
detailed simulation of the crystal and the readout system are shown and
compared. A light yield of about 52 Cherenkov photons per deposited MeV was
measured. The effect of wrapping the crystal with a PTFE layer, with the aim of
maximizing the light collection, is also presented
A Contracting, Turbulent, Starless Core in the Serpens Cluster
We present combined single-dish and interferometric CS(2--1) and N2H+(1--0)
observations of a compact core in the NW region of the Serpens molecular cloud.
The core is starless according to observations from optical to millimeter
wavelengths and its lines have turbulent widths and ``infall asymmetry''. Line
profile modeling indicates supersonic inward motions v_in>0.34 km/s over an
extended region L>12000AU. The high infall speed and large extent exceeds the
predictions of most thermal ambipolar diffusion models and points to a more
dynamical process for core formation. A short (dynamic) timescale, ~1e5
yr=L/v_in, is also suggested by the low N2H+ abundance ~1e-10.Comment: 11 pages including 2 figures. Accepted for publication in the
Astrophysical Journal Letter
Near-Infrared Adaptive Optics Imaging of the Central Regions of Nearby Sc Galaxies: I. M33
Near-infrared images obtained with the Canada-France-Hawaii Telescope (CFHT)
Adaptive Optics Bonnette (AOB) are used to investigate the stellar content
within 18 arcsec of the center of the Local Group spiral galaxy M33. AGB stars
with near-infrared spectral-energy distributions similar to those of giants in
the solar neighborhood and Baade's Window are detected over most of the field.
The bolometric luminosity function (LF) of these stars has a discontinuity near
M_{bol} = -5.25, and comparisons with evolutionary tracks suggest that most of
the AGB stars formed in a burst of star formation 1 - 3 Gyr in the past. The
images are also used to investigate the integrated near-infrared photometric
properties of the nucleus and the central light concentration. The nucleus is
bluer than the central light concentration, in agreement with previous studies
at visible wavelengths. The CO index of the central light concentration 0.5
arcsec from the galaxy center is 0.05, which corresponds to [Fe/H] = -1.2 for
simple stellar systems. Hence, the central light concentration could not have
formed from the chemically-enriched material that dominates the present-day
inner disk of M33.Comment: 23 pages of text + 11 figures; to appear in A
A closer look at the X-ray transient XTE J1908+094: identification of two new near-infrared candidate counterparts
We had reported in Chaty, Mignani, Israel (2002) on the near-infrared (NIR)
identification of a possible counterpart to the black hole candidate XTE
J1908+094 obtained with the ESO/NTT. Here, we present new, follow-up, CFHT
adaptive optics observations of the XTE J1908+094 field, which resolved the
previously proposed counterpart in two objects separated by about 0.8".
Assuming that both objects are potential candidate counterparts, we derive that
the binary system is a low-mass system with a companion star which could be
either an intermediate/late type (A-K) main sequence star at a distance of 3-10
kpc, or a late-type (K) main sequence star at a distance of 1-3 kpc.
However, we show that the brighter of the two objects (J ~ 20.1, H ~ 18.7, K' ~
17.8) is more likely to be the real counterpart of the X-ray source. Its
position is more compatible with our astrometric solution, and colours and
magnitudes of the other object are not consistent with the lower limit of 3 kpc
derived independently from the peak bolometric flux of XTE J1908+094. Further
multi-wavelength observations of both candidate counterparts are crucial in
order to solve the pending identification.Comment: accepted for publication in MNRAS, 5 pages, 3 figure
- …
