69 research outputs found

    Image Reconstruction with a LaBr3-based Rotational Modulator

    Full text link
    A rotational modulator (RM) gamma-ray imager is capable of obtaining significantly better angular resolution than the fundamental geometric resolution defined by the ratio of detector diameter to mask-detector separation. An RM imager consisting of a single grid of absorbing slats rotating ahead of an array of a small number of position-insensitive detectors has the advantage of fewer detector elements (i.e., detector plane pixels) than required by a coded aperture imaging system with comparable angular resolution. The RM therefore offers the possibility of a major reduction in instrument complexity, cost, and power. A novel image reconstruction technique makes it possible to deconvolve the raw images, remove sidelobes, reduce the effects of noise, and provide resolving power a factor of 6 - 8 times better than the geometric resolution. A 19-channel prototype RM developed in our laboratory at Louisiana State University features 13.8 deg full-angle field of view, 1.9 deg geometric angular resolution, and the capability of resolving sources to within 35' separation. We describe the technique, demonstrate the measured performance of the prototype instrument, and describe the prospects for applying the technique to either a high-sensitivity standoff gamma-ray imaging detector or a satellite- or balloon-borne gamma-ray astronomy telescope.Comment: submitted to Nuclear Instrument & Methods, special edition: SORMA 2010 on June 16, 201

    Cosmic-ray acceleration in supernova remnants: non-linear theory revised

    Full text link
    A rapidly growing amount of evidences, mostly coming from the recent gamma-ray observations of Galactic supernova remnants (SNRs), is seriously challenging our understanding of how particles are accelerated at fast shocks. The cosmic-ray (CR) spectra required to account for the observed phenomenology are in fact as steep as E2.2E2.4E^{-2.2}--E^{-2.4}, i.e., steeper than the test-particle prediction of first-order Fermi acceleration, and significantly steeper than what expected in a more refined non-linear theory of diffusive shock acceleration. By accounting for the dynamical back-reaction of the non-thermal particles, such a theory in fact predicts that the more efficient the particle acceleration, the flatter the CR spectrum. In this work we put forward a self-consistent scenario in which the account for the magnetic field amplification induced by CR streaming produces the conditions for reversing such a trend, allowing --- at the same time --- for rather steep spectra and CR acceleration efficiencies (about 20%) consistent with the hypothesis that SNRs are the sources of Galactic CRs. In particular, we quantitatively work out the details of instantaneous and cumulative CR spectra during the evolution of a typical SNR, also stressing the implications of the observed levels of magnetization on both the expected maximum energy and the predicted CR acceleration efficiency. The latter naturally turns out to saturate around 10-30%, almost independently of the fraction of particles injected into the acceleration process as long as this fraction is larger than about 10410^{-4}.Comment: 24 pages, 5 figures, accepted for publication in JCA

    SRAO CO Observation of 11 Supernova Remnants in l = 70 to 190 deg

    Full text link
    We present the results of 12CO J = 1-0 line observations of eleven Galactic supernova remnants (SNRs) obtained using the Seoul Radio Astronomy Observatory (SRAO) 6-m radio telescope. The observation was made as a part of the SRAO CO survey of SNRs between l = 70 and 190 deg, which is intended to identify SNRs interacting with molecular clouds. The mapping areas for the individual SNRs are determined to cover their full extent in the radio continuum. We used halfbeam grid spacing (60") for 9 SNRs and full-beam grid spacing (120") for the rest. We detected CO emission towards most of the remnants. In six SNRs, molecular clouds showed a good spatial relation with their radio morphology, although no direct evidence for the interaction was detected. Two SNRs are particularly interesting: G85.4+0.7, where there is a filamentary molecular cloud along the radio shell, and 3C434.1, where a large molecular cloud appears to block the western half of the remnant. We briefly summarize the results obtained for individual SNRs.Comment: Accepted for publication in Astrophysics & Space Science. 12 pages, 12 figures, and 3 table

    Background model systematics for the Fermi GeV excess

    Full text link
    The possible gamma-ray excess in the inner Galaxy and the Galactic center (GC) suggested by Fermi-LAT observations has triggered a large number of studies. It has been interpreted as a variety of different phenomena such as a signal from WIMP dark matter annihilation, gamma-ray emission from a population of millisecond pulsars, or emission from cosmic rays injected in a sequence of burst-like events or continuously at the GC. We present the first comprehensive study of model systematics coming from the Galactic diffuse emission in the inner part of our Galaxy and their impact on the inferred properties of the excess emission at Galactic latitudes 2<b<202^\circ<|b|<20^\circ and 300 MeV to 500 GeV. We study both theoretical and empirical model systematics, which we deduce from a large range of Galactic diffuse emission models and a principal component analysis of residuals in numerous test regions along the Galactic plane. We show that the hypothesis of an extended spherical excess emission with a uniform energy spectrum is compatible with the Fermi-LAT data in our region of interest at 95%95\% CL. Assuming that this excess is the extended counterpart of the one seen in the inner few degrees of the Galaxy, we derive a lower limit of 10.010.0^\circ (95%95\% CL) on its extension away from the GC. We show that, in light of the large correlated uncertainties that affect the subtraction of the Galactic diffuse emission in the relevant regions, the energy spectrum of the excess is equally compatible with both a simple broken power-law of break energy 2.1±0.22.1\pm0.2 GeV, and with spectra predicted by the self-annihilation of dark matter, implying in the case of bˉb\bar{b}b final states a dark matter mass of 495.4+6.449^{+6.4}_{-5.4} GeV.Comment: 65 pages, 28 figures, 7 table

    A Statistical Study of Galactic SNRs using the PMN Survey

    Full text link
    The Parkes-MIT-NRAO (PMN) radio survey has been used to generate a quasi all-sky study of Galactic Supernova Remnants (SNRs) at a common frequency of 4.85 GHz. We present flux densities estimated for the sample of 110 Southern Galactic SNRs (up to Dec = - 65 deg.) observed with the Parkes 64-m radio telescope and an additional sample of 54 from the Northern PMN (up to Dec = +64 deg.) survey undertaken with the Green Bank 43-m (20 SNRs) and 91-m (34 SNRs) radio telescopes. Out of this total sample of 164 selected SNRs (representing 71% of the 231 known SNRs in the Green catalogue) we consider 138 to provide reliable estimates of flux density and surface brightness distribution. This sub-sample represents those SNRs which fall within carefully chosen selection criteria which minimises the effects of the known problems in establishing reliable fluxes from the PMN survey data. Our selection criteria are based on a judicious restriction of source angular size and telescope beam together with careful evaluation of fluxes on a case by case basis. This gives confidence in the newly derived PMN fluxes when the selection criteria are respected. We find a sharp drop off in the flux densities for Galactic SNRs beyond 4 Jy and then a fairly flat distribution from 5-9 Jy, a slight decline and a further flat distribution from 9-20 Jy though the numbers of SNR in each Jy bin are low. We also re-visit the contentious Sigma-D relation to determine a new power law index for a sub-sample of shell type SNRs which yields beta= -2.2 +/- 0.6. This new evaluation of the Sigma-D relation, applied to the restricted sample, provides new distance estimates and their Galactic scale height distribution. We find a peak in the SNR distribution between 7-11 kpc with most restricted to +/- 100 pc Galactic scale height.Comment: 14 pages, 7 figures. Accepted for publishing in Astrophysics and Space Scienc
    corecore