1,465 research outputs found

    The Casimir Effect for Generalized Piston Geometries

    Full text link
    In this paper we study the Casimir energy and force for generalized pistons constructed from warped product manifolds of the type I×fNI\times_{f}N where I=[a,b]I=[a,b] is an interval of the real line and NN is a smooth compact Riemannian manifold either with or without boundary. The piston geometry is obtained by dividing the warped product manifold into two regions separated by the cross section positioned at R(a,b)R\in(a,b). By exploiting zeta function regularization techniques we provide formulas for the Casimir energy and force involving the arbitrary warping function ff and base manifold NN.Comment: 16 pages, LaTeX. To appear in the proceedings of the Conference on Quantum Field Theory Under the Influence of External Conditions (QFEXT11). Benasque, Spain, September 18-24, 201

    Casimir experiments showing saturation effects

    Full text link
    We address several different Casimir experiments where theory and experiment disagree. First out is the classical Casimir force measurement between two metal half spaces; here both in the form of the torsion pendulum experiment by Lamoreaux and in the form of the Casimir pressure measurement between a gold sphere and a gold plate as performed by Decca et al.; theory predicts a large negative thermal correction, absent in the high precision experiments. The third experiment is the measurement of the Casimir force between a metal plate and a laser irradiated semiconductor membrane as performed by Chen et al.; the change in force with laser intensity is larger than predicted by theory. The fourth experiment is the measurement of the Casimir force between an atom and a wall in the form of the measurement by Obrecht et al. of the change in oscillation frequency of a 87 Rb Bose-Einstein condensate trapped to a fused silica wall; the change is smaller than predicted by theory. We show that saturation effects can explain the discrepancies between theory and experiment observed in all these cases.Comment: 10 pages, 11 figure

    Critical adsorption and critical Casimir forces for geometrically structured confinements

    Full text link
    We study the behavior of fluids, confined by geometrically structured substrates, upon approaching a critical point at T = Tc in their bulk phase diagram. As generic substrate structures periodic arrays of wedges and ridges are considered. Based on general renormalization group arguments we calculate, within mean field approximation, the universal scaling functions for order parameter profiles of a fluid close to a single structured substrate and discuss the decay of its spatial variation into the bulk. We compare the excess adsorption at corrugated substrates with the one at planar walls. The confinement of a critical fluid by two walls generates effective critical Casimir forces between them. We calculate corresponding universal scaling functions for the normal critical Casimir force between a flat and a geometrically structured substrate as well as the lateral critical Casimir force between two identically patterned substrates.Comment: 25 pages, 21 figure

    Exact results for Casimir interactions between dielectric bodies: The weak-coupling or van der Waals Limit

    Full text link
    In earlier papers we have applied multiple scattering techniques to calculate Casimir forces due to scalar fields between different bodies described by delta function potentials. When the coupling to the potentials became weak, closed-form results were obtained. We simplify this weak-coupling technique and apply it to the case of tenuous dielectric bodies, in which case the method involves the summation of van der Waals (Casimir-Polder) interactions. Once again exact results for finite bodies can be obtained. We present closed formulas describing the interaction between spheres and between cylinders, and between an infinite plate and a retangular slab of finite size. For such a slab, we consider the torque acting on it, and find non-trivial equilibrium points can occur.Comment: 4 pages, 3 figure

    Numerical study of the effect of structure and geometry on van der Waals forces

    Full text link
    We use multipolar expansions to find the force on a gold coated sphere above a gold substrate; we study both an empty gold shell and a gold coated polystyrene sphere. We find four characteristic separation ranges. In the first region, which for the empty gold shell occurs for distances, d, smaller than the thickness of the coating, the result agrees with that on a solid gold sphere and varies as d^(-2); for larger separations there is a region where the force behaves as if the coating is strictly two dimensional and varies as d^(-5/2); in the third region the dependence is more unspecific; in the forth region when d is larger than the radius, the force varies as d^(-4). For homogeneous objects of more general shapes we introduce a numerical method based on the solution of an integral equation for the electric field over a system of objects with arbitrary shapes. We study the effect of shape and orientation on the van der Waals interaction between an object and a substrate and between two objects.Comment: 8 pages, presented in the QFEXT07 conference, submitted to Journal of Physics

    Casimir interactions in Ising strips with boundary fields: exact results

    Full text link
    An exact statistical mechanical derivation is given of the critical Casimir forces for Ising strips with arbitrary surface fields applied to edges. Our results show that the strength as well as the sign of the force can be controled by varying the temperature or the fields. An interpretation of the results is given in terms of a linked cluster expansion. This suggests a systematic approach for deriving the critical Casimir force which can be used in more general models.Comment: 10 pages, 4 figure

    Evanescent character of the repulsive thermal Casimir force

    Get PDF
    The physical origin of the negative thermal correction to the Casimir force between metals is clarified. For this purpose the asymptotic behavior of the thermal Casimir force is analyzed at large and small distances in the real frequency representation. Contributions from propagating and evanescent waves are considered separately. At large distances they cancel each other in substantial degree so that only the attractive Lifshitz limit survives. At smaller separations the repulsive evanescent contribution of s-polarization dominates in the case of two metals or a metal and a high-permittivity dielectric. Common origin and order of magnitude of the repulsion in these two cases demonstrate naturalness of the controversial large thermal correction between metals.Comment: to be published in Phys. Rev.

    Material dependence of Casimir forces: gradient expansion beyond proximity

    Get PDF
    A widely used method for estimating Casimir interactions [H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948)] between gently curved material surfaces at short distances is the proximity force approximation (PFA). While this approximation is asymptotically exact at vanishing separations, quantifying corrections to PFA has been notoriously difficult. Here we use a derivative expansion to compute the leading curvature correction to PFA for metals (gold) and insulators (SiO2_2) at room temperature. We derive an explicit expression for the amplitude θ^1\hat\theta_1 of the PFA correction to the force gradient for axially symmetric surfaces. In the non-retarded limit, the corrections to the Casimir free energy are found to scale logarithmically with distance. For gold, θ^1\hat\theta_1 has an unusually large temperature dependence.Comment: 4 pages, 2 figure

    Implications of the Babinet Principle for Casimir Interactions

    Full text link
    We formulate the Babinet Principle (BP) as a relation between the scattering amplitudes for electromagnetic waves, and combine it with multiple scattering techniques to derive new properties of Casimir forces. We show that the Casimir force exerted by a planar conductor or dielectric on a self- complementary perforated planar mirror is approximately half that on a uniform mirror independent of the distance between them. The BP suggests that Casimir edge effects are anomalously small, supporting results obtained earlier in special cases. Finally, we illustrate how the BP can be used to estimate Casimir forces between perforated planar mirrors

    Electromagnetic vacuum energy for two parallel slabs in terms of surface, wave guide and photonic modes

    Full text link
    The formulation of the Lifshitz formula in terms of real frequencies is reconsidered for half spaces described by the plasma model. It is shown that besides the surface modes (for the TM polarization), and the photonic modes, also waveguide modes must be considered.Comment: some references adde
    corecore