576 research outputs found
Dimensional crossover of spin chains in a transverse staggered field: an NMR study
Heisenberg spin-1/2 chain materials are known to substantially alter their
static and dynamic properties when experiencing an effective transverse
staggered field originating from the varying local environment of the
individual spins. We present a temperature-, angular- and field-dependent 29Si
NMR study of the model compound BaCu2Si2O7. The experimental data are
interpreted in terms of the divergent low-temperature transverse
susceptibility, predicted by theory for spin chains in coexisting longitudinal
and transverse staggered fields. Our analysis first employs a
finite-temperature "Density Matrix Renormalization Group" (DMRG) study of the
relevant one-dimensional Hamiltonian. Next we compare our numerical with the
presently known analytical results. With an analysis based on crystal
symmetries we show how the anisotropic contribution to the sample magnetization
is experimentally accessible even below the ordering temperature, in spite of
its competition with the collinear order parameter of the antiferromagnetic
phase. The modification of static and dynamic properties of the system due to
the presence of a local transverse staggered field (LTSF) acting on the
one-dimensional spin array are argued to cause the unusual spin reorientation
transitions observed in BaCu2Si2O7. On the basis of a Ginzburg-Landau type
analysis, we discuss aspects of competing spin structures in the presence of
magnetic order and the enhanced transverse susceptibility.Comment: 14 pages, 7 figure
Impact of strong disorder on the static magnetic properties of the spin-chain compound BaCu2SiGeO7
The disordered quasi-1D magnet BaCu2SiGeO7 is considered as one of the best
physical realizations of the random Heisenberg chain model, which features an
irregular distribution of the exchange parameters and whose ground state is
predicted to be the scarcely investigated random-singlet state (RSS). Based on
extensive 29Si NMR and magnetization studies of BaCu2SiGeO7, combined with
numerical Quantum Monte Carlo simulations, we obtain remarkable quantitative
agreement with theoretical predictions of the random Heisenberg chain model and
strong indications for the formation of a random-singlet state at low
temperatures in this compound. As a local probe, NMR is a well-adapted
technique for studying the magnetism of disordered systems. In this case it
also reveals an additional local transverse staggered field (LTSF), which
affects the low-temperature properties of the RSS. The proposed model
Hamiltonian satisfactorily accounts for the temperature dependence of the NMR
line shapes.Comment: 10 pages, 7 figure
Control and Local Measurement of the Spin Chemical Potential in a Magnetic Insulator
The spin chemical potential characterizes the tendency of spins to diffuse.
Probing the spin chemical potential could provide insight into materials such
as magnetic insulators and spin liquids and aid optimization of spintronic
devices. Here, we introduce single-spin magnetometry as a generic platform for
non-perturbative, nanoscale characterization of spin chemical potentials. We
use this platform to investigate magnons in a magnetic insulator, surprisingly
finding that the magnon chemical potential can be efficiently controlled by
driving the system's ferromagnetic resonance. We introduce a symmetry-based
two-fluid theory describing the underlying magnon processes, realize the first
experimental determination of the local thermomagnonic torque, and illustrate
the detection sensitivity using electrically controlled spin injection. Our
results open the way for nanoscale control and imaging of spin transport in
mesoscopic spin systems.Comment: 18 pages, 4 figure
The Douglas-Fir Genome Sequence Reveals Specialization of the Photosynthetic Apparatus in Pinaceae.
A reference genome sequence for Pseudotsuga menziesii var. menziesii (Mirb.) Franco (Coastal Douglas-fir) is reported, thus providing a reference sequence for a third genus of the family Pinaceae. The contiguity and quality of the genome assembly far exceeds that of other conifer reference genome sequences (contig N50 = 44,136 bp and scaffold N50 = 340,704 bp). Incremental improvements in sequencing and assembly technologies are in part responsible for the higher quality reference genome, but it may also be due to a slightly lower exact repeat content in Douglas-fir vs. pine and spruce. Comparative genome annotation with angiosperm species reveals gene-family expansion and contraction in Douglas-fir and other conifers which may account for some of the major morphological and physiological differences between the two major plant groups. Notable differences in the size of the NDH-complex gene family and genes underlying the functional basis of shade tolerance/intolerance were observed. This reference genome sequence not only provides an important resource for Douglas-fir breeders and geneticists but also sheds additional light on the evolutionary processes that have led to the divergence of modern angiosperms from the more ancient gymnosperms
Accuracy of CT Colonography for Detection of Large Adenomas and Cancers
Background
Computed tomographic (CT) colonography is a noninvasive option in screening for colorectal cancer. However, its accuracy as a screening tool in asymptomatic adults has not been well defined.
Methods
We recruited 2600 asymptomatic study participants, 50 years of age or older, at 15 study centers. CT colonographic images were acquired with the use of standard bowel preparation, stool and fluid tagging, mechanical insufflation, and multidetector-row CT scanners (with 16 or more rows). Radiologists trained in CT colonography reported all lesions measuring 5 mm or more in diameter. Optical colonoscopy and histologic review were performed according to established clinical protocols at each center and served as the reference standard. The primary end point was detection by CT colonography of histologically confirmed large adenomas and adenocarcinomas (10 mm in diameter or larger) that had been detected by colonoscopy; detection of smaller colorectal lesions (6 to 9 mm in diameter) was also evaluated.
Results
Complete data were available for 2531 participants (97%). For large adenomas and cancers, the mean (±SE) per-patient estimates of the sensitivity, specificity, positive and negative predictive values, and area under the receiver-operating-characteristic curve for CT colonography were 0.90±0.03, 0.86±0.02, 0.23±0.02, 0.99±
Conclusions
In this study of asymptomatic adults, CT colonographic screening identified 90% of subjects with adenomas or cancers measuring 10 mm or more in diameter. These findings augment published data on the role of CT colonography in screening patients with an average risk of colorectal cancer. (ClinicalTrials.gov number, NCT00084929; American College of Radiology Imaging Network [ACRIN] number, 6664.
Toward the automation of threat modeling and risk assessment in IoT systems
The Internet of Things (IoT) has recently become one of the most relevant emerging technologies in the IT landscape. IoT systems are characterized by the high heterogeneity of involved architectural components (e.g., device platforms, services, networks, architectures) and involve a multiplicity of application domains. In the IoT scenario, the identification of specific security requirements and the security design are very complex and expensive tasks, since they heavily depend on the configuration deployment actually in place and require security experts. In order to overcome these issues, we propose an approach aimed at supporting the security analysis of an IoT system by means of an almost completely automated process for threat modeling and risk assessment, which also helps identify the security controls to implement in order to mitigate existing security risks. We demonstrate the effectiveness of the approach by discussing its application to a home automation system, built on top of commercial IoT products
- …
