300 research outputs found

    Geometry of contours and Peierls estimates in d=1 Ising models

    Full text link
    Following Fr\"ohlich and Spencer, we study one dimensional Ising spin systems with ferromagnetic, long range interactions which decay as xy2+α|x-y|^{-2+\alpha}, 0α1/20\leq \alpha\leq 1/2. We introduce a geometric description of the spin configurations in terms of triangles which play the role of contours and for which we establish Peierls bounds. This in particular yields a direct proof of the well known result by Dyson about phase transitions at low temperatures.Comment: 28 pages, 3 figure

    Statistical keyword detection in literary corpora

    Full text link
    Understanding the complexity of human language requires an appropriate analysis of the statistical distribution of words in texts. We consider the information retrieval problem of detecting and ranking the relevant words of a text by means of statistical information referring to the "spatial" use of the words. Shannon's entropy of information is used as a tool for automatic keyword extraction. By using The Origin of Species by Charles Darwin as a representative text sample, we show the performance of our detector and compare it with another proposals in the literature. The random shuffled text receives special attention as a tool for calibrating the ranking indices.Comment: Published version. 11 pages, 7 figures. SVJour for LaTeX2

    Phase Transitions in the Multicomponent Widom-Rowlinson Model and in Hard Cubes on the BCC--Lattice

    Full text link
    We use Monte Carlo techniques and analytical methods to study the phase diagram of the M--component Widom-Rowlinson model on the bcc-lattice: there are M species all with the same fugacity z and a nearest neighbor hard core exclusion between unlike particles. Simulations show that for M greater or equal 3 there is a ``crystal phase'' for z lying between z_c(M) and z_d(M) while for z > z_d(M) there are M demixed phases each consisting mostly of one species. For M=2 there is a direct second order transition from the gas phase to the demixed phase while for M greater or equal 3 the transition at z_d(M) appears to be first order putting it in the Potts model universality class. For M large, Pirogov-Sinai theory gives z_d(M) ~ M-2+2/(3M^2) + ... . In the crystal phase the particles preferentially occupy one of the sublattices, independent of species, i.e. spatial symmetry but not particle symmetry is broken. For M to infinity this transition approaches that of the one component hard cube gas with fugacity y = zM. We find by direct simulations of such a system a transition at y_c ~ 0.71 which is consistent with the simulation z_c(M) for large M. This transition appears to be always of the Ising type.Comment: 11 pages, 4 postscript figures (added in replacement), Physica A (in press

    Metastability for reversible probabilistic cellular automata with self--interaction

    Get PDF
    The problem of metastability for a stochastic dynamics with a parallel updating rule is addressed in the Freidlin--Wentzel regime, namely, finite volume, small magnetic field, and small temperature. The model is characterized by the existence of many fixed points and cyclic pairs of the zero temperature dynamics, in which the system can be trapped in its way to the stable phase. %The characterization of the metastable behavior %of a system in the context of parallel dynamics is a very difficult task, %since all the jumps in the configuration space are allowed. Our strategy is based on recent powerful approaches, not needing a complete description of the fixed points of the dynamics, but relying on few model dependent results. We compute the exit time, in the sense of logarithmic equivalence, and characterize the critical droplet that is necessarily visited by the system during its excursion from the metastable to the stable state. We need to supply two model dependent inputs: (1) the communication energy, that is the minimal energy barrier that the system must overcome to reach the stable state starting from the metastable one; (2) a recurrence property stating that for any configuration different from the metastable state there exists a path, starting from such a configuration and reaching a lower energy state, such that its maximal energy is lower than the communication energy

    Temperature dependent fluctuations in the two-dimensional XY model

    Full text link
    We present a detailed investigation of the probability density function (PDF) of order parameter fluctuations in the finite two-dimensional XY (2dXY) model. In the low temperature critical phase of this model, the PDF approaches a universal non-Gaussian limit distribution in the limit T-->0. Our analysis resolves the question of temperature dependence of the PDF in this regime, for which conflicting results have been reported. We show analytically that a weak temperature dependence results from the inclusion of multiple loop graphs in a previously-derived graphical expansion. This is confirmed by numerical simulations on two controlled approximations to the 2dXY model: the Harmonic and ``Harmonic XY'' models. The Harmonic model has no Kosterlitz-Thouless-Berezinskii (KTB) transition and the PDF becomes progressively less skewed with increasing temperature until it closely approximates a Gaussian function above T ~ 4\pi. Near to that temperature we find some evidence of a phase transition, although our observations appear to exclude a thermodynamic singularity.Comment: 15 pages, 5 figures and 1 tabl

    Analyticity of the SRB measure of a lattice of coupled Anosov diffeomorphisms of the torus

    Full text link
    We consider the "thermodynamic limit"of a d-dimensional lattice of hyperbolic dynamical systems on the 2-torus, interacting via weak and nearest neighbor coupling. We prove that the SRB measure is analytic in the strength of the coupling. The proof is based on symbolic dynamics techniques that allow us to map the SRB measure into a Gibbs measure for a spin system on a (d+1)-dimensional lattice. This Gibbs measure can be studied by an extension (decimation) of the usual "cluster expansion" techniques.Comment: 28 pages, 2 figure

    Metastability of non-reversible mean-field Potts model with three spins

    Full text link
    We examine a non-reversible, mean-field Potts model with three spins on a set with NN\uparrow\infty points. Without an external field, there are three critical temperatures and five different metastable regimes. The analysis can be extended by a perturbative argument to the case of small external fields. We illustrate the case of large external fields with some phenomena which are not present in the absence of external field.Comment: 34 pages, 12 figure

    Tunneling and Metastability of continuous time Markov chains

    Full text link
    We propose a new definition of metastability of Markov processes on countable state spaces. We obtain sufficient conditions for a sequence of processes to be metastable. In the reversible case these conditions are expressed in terms of the capacity and of the stationary measure of the metastable states

    Anomalous Spreading of Power-Law Quantum Wave Packets

    Full text link
    We introduce power-law tail quantum wave packets. We show that they can be seen as eigenfunctions of a Hamiltonian with a physical potential. We prove that the free evolution of these packets presents an asymptotic decay of the maximum of the wave packets which is anomalous for an interval of the characterizing power-law exponent. We also prove that the number of finite moments of the wave packets is a conserved quantity during the evolution of the wave packet in the free space.Comment: 5 pages, 3 figures, to appear in Phys. Rev. Let

    Abrupt Convergence and Escape Behavior for Birth and Death Chains

    Get PDF
    We link two phenomena concerning the asymptotical behavior of stochastic processes: (i) abrupt convergence or cut-off phenomenon, and (ii) the escape behavior usually associated to exit from metastability. The former is characterized by convergence at asymptotically deterministic times, while the convergence times for the latter are exponentially distributed. We compare and study both phenomena for discrete-time birth-and-death chains on Z with drift towards zero. In particular, this includes energy-driven evolutions with energy functions in the form of a single well. Under suitable drift hypotheses, we show that there is both an abrupt convergence towards zero and escape behavior in the other direction. Furthermore, as the evolutions are reversible, the law of the final escape trajectory coincides with the time reverse of the law of cut-off paths. Thus, for evolutions defined by one-dimensional energy wells with sufficiently steep walls, cut-off and escape behavior are related by time inversion.Comment: 2 figure
    corecore