292 research outputs found
Aeroservoelastic Wind-Tunnel Tests of a Free-Flying, Joined-Wing SensorCraft Model for Gust Load Alleviation
A team comprised of the Air Force Research Laboratory (AFRL), Boeing, and the NASA Langley Research Center conducted three aeroservoelastic wind-tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, exible vehicles. In the first of these three tests, a full-span, aeroelastically scaled, wind-tunnel model of a joined-wing SensorCraft vehicle was mounted to a force balance to acquire a basic aerodynamic data set. In the second and third tests, the same wind-tunnel model was mated to a new, two-degree-of-freedom, beam mount. This mount allowed the full-span model to translate vertically and pitch. Trimmed flight at -10% static margin and gust load alleviation were successfully demonstrated. The rigid body degrees of freedom required that the model be own in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free-flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort. The balance and free ying wind-tunnel tests will be summarized. The design of the trim and gust load alleviation control laws along with the associated results will also be discussed
Characterization of the n-TOF EAR-2 neutron beam
The experimental area 2 (EAR-2) at CERNs neutron time-of-flight facility (n-TOF), which is operational since 2014, is designed and built as a short-distance complement to the experimental area 1 (EAR-1). The Parallel Plate Avalanche Counter (PPAC) monitor experiment was performed to characterize the beam prole and the shape of the neutron 'ux at EAR-2. The prompt γ-flash which is used for calibrating the time-of-flight at EAR-1 is not seen by PPAC at EAR-2, shedding light on the physical origin of this γ-flash
Measurement of the Ge 70 (n,γ) cross section up to 300 keV at the CERN n-TOF facility
©2019 American Physical Society.Neutron capture data on intermediate mass nuclei are of key importance to nucleosynthesis in the weak component of the slow neutron capture processes, which occurs in massive stars. The (n,γ) cross section on Ge70, which is mainly produced in the s process, was measured at the neutron time-of-flight facility n-TOF at CERN. Resonance capture kernels were determined up to 40 keV neutron energy and average cross sections up to 300 keV. Stellar cross sections were calculated from kT=5 keV to kT=100 keV and are in very good agreement with a previous measurement by Walter and Beer (1985) and recent evaluations. Average cross sections are in agreement with Walter and Beer (1985) over most of the neutron energy range covered, while they are systematically smaller for neutron energies above 150 keV. We have calculated isotopic abundances produced in s-process environments in a 25 solar mass star for two initial metallicities (below solar and close to solar). While the low metallicity model reproduces best the solar system germanium isotopic abundances, the close to solar model shows a good global match to solar system abundances in the range of mass numbers A=60-80.Peer reviewedFinal Published versio
A Machine Learning Approach to Monitor Air Quality from Traffic and Weather data
Knowing the amount of air pollutants in our cities is of great importance to help decision makers in the definition of effective strategies aimed at maintaining a good air quality, which is a key factor for a healthy life, especially in urban environments. Using a data set from a big metropolitan city, we realize the uAQE: urban Air Quality Evaluator, which is a supervised machine learning model able to estimate air pollutants values using only weather and traffic data. We evaluate the performance of our solution by comparing the predicted pollutant values with the real measurements provided by professional air monitoring stations. We use the predicted pollutants to compute a standard Air Quality Index (AQI) and we map it into a set of five qualitative AQI classes, which can be used for decision making at the city level. uAQE is able to predict the AQI class value with an accuracy of 0.8
Aeroservoelastic Wind-Tunnel Test of the SUGAR Truss Braced Wing Wind-Tunnel Model
The Subsonic Ultra Green Aircraft Research (SUGAR) Truss-Braced Wing (TBW) aeroservoelastic (ASE) wind-tunnel test was conducted in the NASA Langley Transonic Dynamics Tunnel (TDT) and was completed in April, 2014. The primary goals of the test were to identify the open-loop flutter boundary and then demonstrate flutter suppression. A secondary goal was to demonstrate gust load alleviation (GLA). Open-loop flutter and limit cycle oscillation onset boundaries were identified for a range of Mach numbers and various angles of attack. Two sets of control laws were designed for the model and both sets of control laws were successful in suppressing flutter. Control laws optimized for GLA were not designed; however, the flutter suppression control laws were assessed using the TDT Airstream Oscillation System. This paper describes the experimental apparatus, procedures, and results of the TBW wind-tunnel test. Acquired system ID data used to generate ASE models is also discussed.2 study
High-accuracy determination of the neutron flux in the new experimental area n_TOF-EAR2 at CERN
A new high flux experimental area has recently become operational at the n_TOF facility at CERN. This new measuring station, n_TOF-EAR2, is placed at the end of a vertical beam line at a distance of approximately 20m from the spallation target. The characterization of the neutron beam, in terms of flux, spatial profile and resolution function, is of crucial importance for the feasibility study and data analysis of all measurements to be performed in the new area. In this paper, the measurement of the neutron flux, performed with different solid-state and gaseous detection systems, and using three neutron-converting reactions considered standard in different energy regions is reported. The results of the various measurements have been combined, yielding an evaluated neutron energy distribution in a wide energy range, from 2meV to 100MeV, with an accuracy ranging from 2%, at low energy, to 6% in the high-energy region. In addition, an absolute normalization of the n_TOF-EAR2 neutron flux has been obtained by means of an activation measurement performed with 197Au foils in the beam.Peer reviewe
The measurement programme at the neutron time-of-flight facility n-TOF at CERN
Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN's neutron time-of-flight facility n-TOF has produced a considerable amount of experimental data since it has become fully operational with the start of its scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at n-TOF will be presented
Neutron spectroscopy of 26Mg states : Constraining the stellar neutron source 22Ne(α,n)25Mg
This work reports on accurate, high-resolution measurements of the 25Mg(n,γ)26Mg and 25Mg(n,tot) cross sections in the neutron energy range from thermal to about 300 keV, leading to a significantly improved 25Mg(n,γ)26Mg parametrization. The relevant resonances for n+25Mg were characterized from a combined R-matrix analysis of the experimental data. This resulted in an unambiguous spin/parity assignment of the corresponding excited states in 26Mg. With this information experimental upper limits of the reaction rates for 22Ne(α,n)25Mg and 22Ne(α,γ)26Mg were established, potentially leading to a significantly higher (α,n)/(α,γ) ratio than previously evaluated. The impact of these results has been studied for stellar models in the mass range 2 to 25 M⊙
Microstructure-sensitive fatigue modelling of medical-grade fine wire
This work presents a modelling methodology to assess the sensitivity to microstructure in high‐cycle fatigue performance of fine wires made from MP35N alloy (35Ni‐35Co‐20Cr‐10Mo in wt%) used as conductors in cardiac leads. The model consists of a microstructure generator that creates a mesh of a statistically representative microstructure, a finite element analysis using a crystal plasticity constitutive model to determine the local response behaviour of the microstructure, and a postprocesser using fatigue indicating parameters to assess the likelihood of fatigue crack initiation. The fatigue crack initiation potency for selected microstructure attributes, boundary and interface conditions, and loading profiles is determined by computing the Fatemi‐Socie fatigue indicating parameter over a physically relevant volume of scale. Case studies are used to investigate (1) the influence of nonmetallic inclusion proximity to the wire surface on fatigue potency and (2) the transition life demarcating lives primarily controlled by fatigue crack initiation versus microcrack fatigue growth
Radiative neutron capture on Pu 242 in the resonance region at the CERN n-TOF-EAR1 facility
The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with uranium to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. However, an extensive use of MOX fuels, in particular in fast reactors, requires more accurate capture and fission cross sections for some Pu isotopes. In the case of Pu242 there are sizable discrepancies among the existing capture cross-section measurements included in the evaluations (all from the 1970s) resulting in an uncertainty as high as 35% in the fast energy region. Moreover, postirradiation experiments evaluated with JEFF-3.1 indicate an overestimation of 14% in the capture cross section in the fast neutron energy region. In this context, the Nuclear Energy Agency (NEA) requested an accuracy of 8% in this cross section in the energy region between 500 meV and 500 keV. This paper presents a new time-of-flight capture measurement on Pu242 carried out at n-TOF-EAR1 (CERN), focusing on the analysis and statistical properties of the resonance region, below 4 keV. The Pu242(n,γ) reaction on a sample containing 95(4) mg enriched to 99.959% was measured with an array of four C6D6 detectors and applying the total energy detection technique. The high neutron energy resolution of n-TOF-EAR1 and the good statistics accumulated have allowed us to extend the resonance analysis up to 4 keV, obtaining new individual and average resonance parameters from a capture cross section featuring a systematic uncertainty of 5%, fulfilling the request of the NEA
- …
