109 research outputs found
Clues to Neuro-Degeneration in Niemann-Pick Type C Disease from Global Gene Expression Profiling
BACKGROUND: Niemann-Pick Type C (NPC) disease is a neurodegenerative disease that is characterized by the accumulation of cholesterol and glycosphingolipids in the late endocytic pathway. The majority of NPC cases are due to mutations in the NPC1 gene. The precise function of this gene is not yet known. METHODOLOGY/PRINCIPAL FINDINGS: Using cDNA microarrays, we analyzed the genome-wide expression patterns of human fibroblasts homozygous for the I1061T NPC1 mutation that is characterized by a severe defect in the intracellular processing of low density lipoprotein-derived cholesterol. A distinct gene expression profile was identified in NPC fibroblasts from different individuals when compared with fibroblasts isolated from normal subjects. As expected, NPC1 mutant cells displayed an inappropriate homeostatic response to accumulated intracellular cholesterol. In addition, a number of striking parallels were observed between NPC disease and Alzheimer's disease. CONCLUSIONS/SIGNIFICANCE: Many genes involved in the trafficking and processing of amyloid precursor protein and the microtubule binding protein, tau, were more highly expressed. Numerous genes important for membrane traffic and the cellular regulation of calcium, metals and other ions were upregulated. Finally, NPC fibroblasts exhibited a gene expression profile indicative of oxidative stress. These changes are likely contributors to the pathophysiology of Niemann-Pick Type C disease
Composição e manejo da solução nutritiva visando a diminuição do teor de nitrato nas folhas de alface hidropônica
Stochastic backgrounds of relic gravitons: a theoretical appraisal
Stochastic backgrounds or relic gravitons, if ever detected, will constitute
a prima facie evidence of physical processes taking place during the earliest
stages of the evolution of the plasma. The essentials of the stochastic
backgrounds of relic gravitons are hereby introduced and reviewed. The pivotal
observables customarily employed to infer the properties of the relic gravitons
are discussed both in the framework of the CDM paradigm as well as in
neighboring contexts. The complementarity between experiments measuring the
polarization of the Cosmic Microwave Background (such as, for instance, WMAP,
Capmap, Quad, Cbi, just to mention a few) and wide band interferometers (e.g.
Virgo, Ligo, Geo, Tama) is emphasized. While the analysis of the microwave sky
strongly constrains the low-frequency tail of the relic graviton spectrum,
wide-band detectors are sensitive to much higher frequencies where the spectral
energy density depends chiefly upon the (poorly known) rate of
post-inflationary expansion.Comment: 94 pages, 32 figure
Connecting Planetary Composition with Formation
The rapid advances in observations of the different populations of
exoplanets, the characterization of their host stars and the links to the
properties of their planetary systems, the detailed studies of protoplanetary
disks, and the experimental study of the interiors and composition of the
massive planets in our solar system provide a firm basis for the next big
question in planet formation theory. How do the elemental and chemical
compositions of planets connect with their formation? The answer to this
requires that the various pieces of planet formation theory be linked together
in an end-to-end picture that is capable of addressing these large data sets.
In this review, we discuss the critical elements of such a picture and how they
affect the chemical and elemental make up of forming planets. Important issues
here include the initial state of forming and evolving disks, chemical and dust
processes within them, the migration of planets and the importance of planet
traps, the nature of angular momentum transport processes involving turbulence
and/or MHD disk winds, planet formation theory, and advanced treatments of disk
astrochemistry. All of these issues affect, and are affected by the chemistry
of disks which is driven by X-ray ionization of the host stars. We discuss how
these processes lead to a coherent end-to-end model and how this may address
the basic question.Comment: Invited review, accepted for publication in the 'Handbook of
Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018). 46 pages, 10
figure
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
A(c)(+) Production and Baryon-to-Meson Ratios in pp and p-Pb Collisions at root S-NN=5.02 TeV at the LHC
The prompt production of the charm baryon Λ_{c}^{+} and the Λ_{c}^{+}/D^{0} production ratios were measured at midrapidity with the ALICE detector in pp and p-Pb collisions at sqrt[s_{NN}]=5.02 TeV. These new measurements show a clear decrease of the Λ_{c}^{+}/D^{0} ratio with increasing transverse momentum (p_{T}) in both collision systems in the range 2<p_{T}<12 GeV/c, exhibiting similarities with the light-flavor baryon-to-meson ratios p/π and Λ/K_{S}^{0}. At low p_{T}, predictions that include additional color-reconnection mechanisms beyond the leading-color approximation, assume the existence of additional higher-mass charm-baryon states, or include hadronization via coalescence can describe the data, while predictions driven by charm-quark fragmentation processes measured in e^{+}e^{-} and e^{-}p collisions significantly underestimate the data. The results presented in this Letter provide significant evidence that the established assumption of universality (colliding-system independence) of parton-to-hadron fragmentation is not sufficient to describe charm-baryon production in hadronic collisions at LHC energies
A(c)(+) Production and Baryon-to-Meson Ratios in pp and p-Pb Collisions at root S-NN=5.02 TeV at the LHC
The prompt production of the charm baryon \u39bc+ and the \u39bc+/D0 production ratios were measured at midrapidity with the ALICE detector in pp and p-Pb collisions at sNN=5.02 TeV. These new measurements show a clear decrease of the \u39bc+/D0 ratio with increasing transverse momentum (pT) in both collision systems in the range 2<12 GeV/c, exhibiting similarities with the light-flavor baryon-to-meson ratios p/\u3c0 and \u39b/KS0. At low pT, predictions that include additional color-reconnection mechanisms beyond the leading-color approximation, assume the existence of additional higher-mass charm-baryon states, or include hadronization via coalescence can describe the data, while predictions driven by charm-quark fragmentation processes measured in e+e- and e-p collisions significantly underestimate the data. The results presented in this Letter provide significant evidence that the established assumption of universality (colliding-system independence) of parton-to-hadron fragmentation is not sufficient to describe charm-baryon production in hadronic collisions at LHC energies
Suppression in Pb-Pb Collisions at the LHC.
The production of the ψ(2S) charmonium state was measured with ALICE in Pb-Pb collisions at sqrt[s_{NN}]=5.02 TeV, in the dimuon decay channel. A significant signal was observed for the first time at LHC energies down to zero transverse momentum, at forward rapidity (2.5<y<4). The measurement of the ratio of the inclusive production cross sections of the ψ(2S) and J/ψ resonances is reported as a function of the centrality of the collisions and of transverse momentum, in the region p_{T}<12 GeV/c. The results are compared with the corresponding measurements in pp collisions, by forming the double ratio [σ^{ψ(2S)}/σ^{J/ψ}]_{Pb-Pb}/[σ^{ψ(2S)}/σ^{J/ψ}]_{pp}. It is found that in Pb-Pb collisions the ψ(2S) is suppressed by a factor of ∼2 with respect to the J/ψ. The ψ(2S) nuclear modification factor R_{AA} was also obtained as a function of both centrality and p_{T}. The results show that the ψ(2S) resonance yield is strongly suppressed in Pb-Pb collisions, by a factor of up to ∼3 with respect to pp. Comparisons of cross section ratios with previous Super Proton Synchrotron findings by the NA50 experiment and of R_{AA} with higher-p_{T} results at LHC energy are also reported. These results and the corresponding comparisons with calculations of transport and statistical models address questions on the presence and properties of charmonium states in the quark-gluon plasma formed in nuclear collisions at the LHC
- …
