215 research outputs found
Seasonal changes in patterns of gene expression in avian song control brain regions.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Photoperiod and hormonal cues drive dramatic seasonal changes in structure and function of the avian song control system. Little is known, however, about the patterns of gene expression associated with seasonal changes. Here we address this issue by altering the hormonal and photoperiodic conditions in seasonally-breeding Gambel's white-crowned sparrows and extracting RNA from the telencephalic song control nuclei HVC and RA across multiple time points that capture different stages of growth and regression. We chose HVC and RA because while both nuclei change in volume across seasons, the cellular mechanisms underlying these changes differ. We thus hypothesized that different genes would be expressed between HVC and RA. We tested this by using the extracted RNA to perform a cDNA microarray hybridization developed by the SoNG initiative. We then validated these results using qRT-PCR. We found that 363 genes varied by more than 1.5 fold (>log(2) 0.585) in expression in HVC and/or RA. Supporting our hypothesis, only 59 of these 363 genes were found to vary in both nuclei, while 132 gene expression changes were HVC specific and 172 were RA specific. We then assigned many of these genes to functional categories relevant to the different mechanisms underlying seasonal change in HVC and RA, including neurogenesis, apoptosis, cell growth, dendrite arborization and axonal growth, angiogenesis, endocrinology, growth factors, and electrophysiology. This revealed categorical differences in the kinds of genes regulated in HVC and RA. These results show that different molecular programs underlie seasonal changes in HVC and RA, and that gene expression is time specific across different reproductive conditions. Our results provide insights into the complex molecular pathways that underlie adult neural plasticity
Vocal Learning and Auditory-Vocal Feedback
Vocal learning is usually studied in songbirds and humans, species that can form auditory templates by listening to acoustic models and then learn to vocalize to match the template. Most other species are thought to develop vocalizations without auditory feedback. However, auditory input influences the acoustic structure of vocalizations in a broad distribution of birds and mammals. Vocalizations are dened here as sounds generated by forcing air past vibrating membranes. A vocal motor program may generate vocalizations such as crying or laughter, but auditory feedback may be required for matching precise acoustic features of vocalizations. This chapter discriminates limited vocal learning, which uses auditory input to fine-tune acoustic features of an inherited auditory template, from complex vocal learning, in which novel sounds are learned by matching a learned auditory template. Two or three songbird taxa and four or ve mammalian taxa are known for complex vocal learning. A broader range of mammals converge in the acoustic structure of vocalizations when in socially interacting groups, which qualifies as limited vocal learning. All birds and mammals tested use auditory-vocal feedback to adjust their vocalizations to compensate for the effects of noise, and many species modulate their signals as the costs and benefits of communicating vary. This chapter asks whether some auditory-vocal feedback may have provided neural substrates for the evolution of vocal learning. Progress will require more precise definitions of different forms of vocal learning, broad comparative review of their presence and absence, and behavioral and neurobiological investigations into the mechanisms underlying the skills.PostprintPeer reviewe
Effects of the social environment during adolescence on the development of social behaviour, hormones and morphology in male zebra finches (Taeniopygia guttata)
Abstract
Background
Individual differences in behaviour are widespread in the animal kingdom and often influenced by the size or composition of the social group during early development. In many vertebrates the effects of social interactions early in life on adult behaviour are mediated by changes in maturation and physiology. Specifically, increases in androgens and glucocorticoids in response to social stimulation seem to play a prominent role in shaping behaviour during development. In addition to the prenatal and early postnatal phase, adolescence has more recently been identified as an important period during which adult behaviour and physiology are shaped by the social environment, which so far has been studied mostly in mammals. We raised zebra finches ( Taeniopygia guttata ) under three environmental conditions differing in social complexity during adolescence\ua0-\ua0juvenile pairs, juvenile groups, and mixed-age groups - and studied males\u2019 behavioural, endocrine, and morphological maturation, and later their adult behaviour.
Results
As expected, group-housed males exhibited higher frequencies of social interactions. Group housing also enhanced song during adolescence, plumage development, and the frequency and intensity of adult courtship and aggression. Some traits, however, were affected more in juvenile groups and others in mixed-age groups. Furthermore, a testosterone peak during late adolescence was suppressed in groups with adults. In contrast, corticosterone concentrations did not differ between rearing environments. Unexpectedly, adult courtship in a test situation was lowest in pair-reared males and aggression depended upon the treatment of the opponent with highest rates shown by group-reared males towards pair-reared males. This contrasts with previous findings, possibly due to differences in photoperiod and the acoustic environment.
Conclusion
Our results support the idea that effects of the adolescent social environment on adult behaviour in vertebrates are mediated by changes in social interactions affecting behavioural and morphological maturation. We found no evidence that long-lasting differences in behaviour reflect testosterone or corticosterone levels during adolescence, although differences between juvenile and mixed-age groups suggest that testosterone and song behaviour during late adolescence may be associated
Female sexual preferences toward conspecific and hybrid male mating calls in two species of polygynous deer, Cervus elaphus and C. nippon
The behavioral processes at the basis of hybridization and introgression are understudied in terrestrial mammals. We use a unique model to test the role of sexual signals as a reproductive barrier to introgression by investigating behavioral responses to male sexual calls in estrous females of two naturally allopatric but reproductively compatible deer species, red deer and sika deer. Previous studies demonstrated asymmetries in acoustic species discrimination between these species: most but not all female red deer prefer conspecific over sika deer male calls while female sika deer exhibit no preference differences. Here, we extend this examination of acoustic species discrimination to the role of male sexual calls in introgression between parent species and hybrids. Using two-speaker playback experiments, we compared the preference responses of estrous female red and sika deer to male sexual calls from conspecifics versus red × sika hybrids. These playbacks simulate early secondary contact between previously allopatric species after hybridization has occurred. Based on previous conspecific versus heterospecific playbacks, we predicted that most female red deer would prefer conspecific calls while female sika deer would show no difference in their preference behaviors toward conspecific and hybrid calls. However, results show that previous asymmetries did not persist as neither species exhibited more preferences for conspecific over hybrid calls. Thus, vocal behavior is not likely to deter introgression between these species during the early stages of sympatry. On a wider scale, weak discrimination against hybrid sexual signals could substantially contribute to this important evolutionary process in mammals and other taxa
Versatility and Stereotypy of Free-Tailed Bat Songs
In mammals, complex songs are uncommon and few studies have examined song composition or the order of elements in songs, particularly with respect to regional and individual variation. In this study we examine how syllables and phrases are ordered and combined, ie “syntax”, of the song of Tadarida brasiliensis, the Brazilian free-tailed bat. Specifically, we test whether phrase and song composition differ among individuals and between two regions, we determine variability across renditions within individuals, and test whether phrases are randomly ordered and combined. We report three major findings. First, song phrases were highly stereotyped across two regions, so much so that some songs from the two colonies were almost indistinguishable. All males produced songs with the same four types of syllables and the same three types of phrases. Second, we found that although song construction was similar across regions, the number of syllables within phrases, and the number and order of phrases in songs varied greatly within and among individuals. Last, we determined that phrase order, although diverse, deviated from random models. We found broad scale phrase-order rules and certain higher order combinations that were highly preferred. We conclude that free-tailed bat songs are composed of highly stereotyped phrases hierarchically organized by a common set of syntactical rules. However, within global species-specific patterns, songs male free-tailed bats dynamically vary syllable number, phrase order, and phrase repetitions across song renditions
Acoustic structure of songs in island populations of the Japanese bush warbler, Cettia diphone, in relation to sexual selection
A new approach to study dispersal: immigration of novel alleles reveals female-biased dispersal in great reed warblers
Does song repertoire size in Common Blackbirds play a role in an intra-sexual context?
Concordance between vocal and genetic diversity in crested gibbons
<p>Abstract</p> <p>Background</p> <p>Gibbons or small apes are, next to great apes, our closest living relatives, and form the most diverse group of contemporary hominoids. A characteristic trait of gibbons is their species-specific song structure, which, however, exhibits a certain amount of inter- and intra-individual variation. Although differences in gibbon song structure are routinely applied as taxonomic tool to identify subspecies and species, it remains unclear to which degree acoustic and phylogenetic differences are correlated. To trace this issue, we comparatively analyse song recordings and mitochondrial cytochrome b gene sequence data from 22 gibbon populations representing six of the seven crested gibbon species (genus <it>Nomascus</it>). In addition, we address whether song similarity and geographic distribution can support a recent hypothesis about the biogeographic history of crested gibbons.</p> <p>Results</p> <p>The acoustic analysis of 92 gibbon duets confirms the hypothesised concordance between song structure and phylogeny. Based on features of male and female songs, we can not only distinguish between <it>N. nasutus</it>, <it>N. concolor </it>and the four southern species (<it>N. leucogenys, N. siki, N. annamensis</it>, <it>N. gabriellae</it>), but also between the latter by applying more detailed analysis. In addition to the significant correlation between song structure and genetic similarity, we find a similar high correlation between song similarity and geographic distance.</p> <p>Conclusions</p> <p>The results show that the structure of crested gibbon songs is not only a reliable tool to verify phylogenetic relatedness, but also to unravel geographic origins. As vocal production in other nonhuman primate species appears to be evolutionarily based, it is likely that loud calls produced by other species can serve as characters to elucidate phylogenetic relationships.</p
Evolutionary Dead End in the Galápagos: Divergence of Sexual Signals in the Rarest of Darwin's Finches
Understanding the mechanisms underlying speciation remains a challenge in evolutionary biology. The adaptive radiation of Darwin's finches is a prime example of species formation, and their study has revealed many important insights into evolutionary processes. Here, we report striking differences in mating signals (songs), morphology and genetics between the two remnant populations of Darwin's mangrove finch Camarhynchus heliobates, one of the rarest species in the world. We also show that territorial males exhibited strong discrimination of sexual signals by locality: in response to foreign songs, males responded weaker than to songs from their own population. Female responses were infrequent and weak but gave approximately similar results. Our findings not only suggest speciation in the mangrove finch, thereby providing strong support for the central role of sexual signals during speciation, but they have also implications for the conservation of this iconic bird. If speciation is complete, the eastern species will face imminent extinction, because it has a population size of only 5–10 individuals
- …
