722 research outputs found

    Fracture healing following high energy tibial trauma: Ilizarov versus Taylor Spatial Frame

    Get PDF
    Introduction: The optimal treatment of high energy tibial fractures remains controversial and a challenging orthopaedic problem. The role of external fi xators for all these tibial fractures has been shown to be crucial. Methods: A fi ve-year consecutive series was reviewed retrospectively, identifying two treatment groups: Ilizarov and Taylor Spatial Frame (TSF; Smith & Nephew, Memphis, TN, US). Fracture healing time was the primary outcome measure. Results: A total of 112 patients (85 Ilizarov, 37 TSF) were identifi ed for the review with a mean age of 45 years. This was higher in women (57 years) than in men (41 years). There was no signifi cant difference between frame types (p=0.83). The median healing time was 163 days in both groups. There was no signifi cant difference in healing time between smokers and non-smokers (180 vs 165 days respectively, p=0.07), open or closed fractures (p=0.13) or age and healing time (Spearman's r=0.12, p=0.18). There was no incidence of non-union or re-fracture following frame removal in either group. Conclusions: Despite the assumption of the rigid construct of the TSF, the median time to union was similar to that of the Ilizarov frame and the TSF therefore can play a signifi cant role in complex tibial fractures

    Surface-initiated growth of copper using isonicotinic acid-functionalized aluminum oxide surfaces

    Get PDF
    Isonicotinate self-assembled monolayers (SAM) were prepared on alumina surfaces (A) using isonicotinic acid (iNA). These functionalized layers (iNA-A) were used for the seeded growth of copper films (Cu-iNA-A) by hydrazine hydrate-initiated electroless deposition. The films were characterized by scanning electron microscopy (SEM), electron-dispersive X-ray spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and advancing contact angle measurements. The films are Cu0 but with surface oxidation, and show a faceted morphology, which is more textured (Rq = 460 ± 90 nm) compared to the SAM (Rq = 2.8 ± 0.5 nm). In contrast, growth of copper films by SnCl2/PdCl2 catalyzed electroless deposition, using formaldehyde (CH2O) as the reducing agent, shows a nodular morphology on top of a relatively smooth surface. No copper films are observed in the absence of the isonicotinate SAM. The binding of Cu2+ to the iNA is proposed to facilitate reduction to Cu0 and create the seed for subsequent growth. The films show good adhesion to the functionalized surface

    Early discontinuation of endocrine therapy for breast cancer: Who is at risk in clinical practice?

    Get PDF
    Purpose: Despite evidence supporting at least five years of endocrine therapy for early breast cancer, many women discontinue therapy early. We investigated the impact of initial therapy type and specific comorbidities on discontinuation of endocrine therapy in clinical practice. Methods We identified women in a population-based cohort with a diagnosis of early breast cancer and an incident dispensing of anastrozole, letrozole or tamoxifen from 2003-2008 (N = 1531). Pharmacy and health service data were used to determine therapy duration, treatment for pre-existing and post-initiation comorbidities (anxiety, depression, hot flashes, musculoskeletal pain, osteoporosis, vaginal atrophy), demographic and other clinical characteristics. Time to discontinuation of initial, and any, endocrine therapy was calculated. Cox regression determined the association of different characteristics on early discontinuation. Results Initial endocrine therapy continued for a median of 2.2 years and any endocrine therapy for 4.8 years. Cumulative probability of discontinuing any therapy was 17% after one year and 58% by five years. Initial tamoxifen, pre-existing musculoskeletal pain and newly-treated anxiety predicted shorter initial therapy but not discontinuation of any therapy. Early discontinuation of any therapy was associated with newly-treated hot flashes (HR = 2.1, 95%CI = 1.3-3.3), not undergoing chemotherapy (HR = 1.4, 95%CI = 1.1-1.8) and not undergoing mastectomy (HR = 1.5, 95%CI = 1.2-1.8). Conclusions Less than half of women completed five years of endocrine therapy. Women at greatest risk of stopping any therapy early were those with newly-treated hot flashes, no initial chemotherapy, or no initial mastectomy. This suboptimal use means that the reductions in recurrence demonstrated in clinical trials may not be realised in practice

    Tissue Microenvironments Define and Get Reinforced by Macrophage Phenotypes in Homeostasis or during Inflammation, Repair and Fibrosis

    Get PDF
    Current macrophage phenotype classifications are based on distinct in vitro culture conditions that do not adequately mirror complex tissue environments. In vivo monocyte progenitors populate all tissues for immune surveillance which supports the maintenance of homeostasis as well as regaining homeostasis after injury. Here we propose to classify macrophage phenotypes according to prototypical tissue environments, e.g. as they occur during homeostasis as well as during the different phases of (dermal) wound healing. In tissue necrosis and/or infection, damage- and/or pathogen-associated molecular patterns induce proinflammatory macrophages by Toll-like receptors or inflammasomes. Such classically activated macrophages contribute to further tissue inflammation and damage. Apoptotic cells and antiinflammatory cytokines dominate in postinflammatory tissues which induce macrophages to produce more antiinflammatory mediators. Similarly, tumor-associated macrophages also confer immunosuppression in tumor stroma. Insufficient parenchymal healing despite abundant growth factors pushes macrophages to gain a profibrotic phenotype and promote fibrocyte recruitment which both enforce tissue scarring. Ischemic scars are largely devoid of cytokines and growth factors so that fibrolytic macrophages that predominantly secrete proteases digest the excess extracellular matrix. Together, macrophages stabilize their surrounding tissue microenvironments by adapting different phenotypes as feed-forward mechanisms to maintain tissue homeostasis or regain it following injury. Furthermore, macrophage heterogeneity in healthy or injured tissues mirrors spatial and temporal differences in microenvironments during the various stages of tissue injury and repair. Copyright (C) 2012 S. Karger AG, Base

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Clinical relevance assessment of animal preclinical research (RAA) tool: development and explanation

    Get PDF
    Background Only a small proportion of preclinical research (research performed in animal models prior to clinical trials in humans) translates into clinical benefit in humans. Possible reasons for the lack of translation of the results observed in preclinical research into human clinical benefit include the design, conduct, and reporting of preclinical studies. There is currently no formal domain-based assessment of the clinical relevance of preclinical research. To address this issue, we have developed a tool for the assessment of the clinical relevance of preclinical studies, with the intention of assessing the likelihood that therapeutic preclinical findings can be translated into improvement in the management of human diseases. / Methods We searched the EQUATOR network for guidelines that describe the design, conduct, and reporting of preclinical research. We searched the references of these guidelines to identify further relevant publications and developed a set of domains and signalling questions. We then conducted a modified Delphi-consensus to refine and develop the tool. The Delphi panel members included specialists in evidence-based (preclinical) medicine specialists, methodologists, preclinical animal researchers, a veterinarian, and clinical researchers. A total of 20 Delphi-panel members completed the first round and 17 members from five countries completed all three rounds. / Results This tool has eight domains (construct validity, external validity, risk of bias, experimental design and data analysis plan, reproducibility and replicability of methods and results in the same model, research integrity, and research transparency) and a total of 28 signalling questions and provides a framework for researchers, journal editors, grant funders, and regulatory authorities to assess the potential clinical relevance of preclinical animal research. / Conclusion We have developed a tool to assess the clinical relevance of preclinical studies. This tool is currently being piloted

    Diversity of Murine Norovirus Strains Isolated from Asymptomatic Mice of Different Genetic Backgrounds within a Single U.S. Research Institute

    Get PDF
    Antibody prevalence studies in laboratory mice indicate that murine norovirus (MNV) infections are common, but the natural history of these viruses has not been fully established. This study examined the extent of genetic diversity of murine noroviruses isolated from healthy laboratory mice housed in multiple animal facilities within a single, large research institute- the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (NIAID-NIH) in Bethesda, Maryland, U.S. Ten distinct murine norovirus strains were isolated from various tissues and feces of asymptomatic wild type sentinel mice as well as asymptomatic immunodeficient (RAG 2−/−) mice. The NIH MNV isolates showed little cytopathic effect in permissive RAW264.7 cells in early passages, but all isolates examined could be adapted to efficient growth in cell culture by serial passage. The viruses, although closely related in genome sequence, were distinguishable from each other according to facility location, likely due to the introduction of new viruses into each facility from separate sources or vendors at different times. Our study indicates that the murine noroviruses are widespread in these animal facilities, despite rigorous guidelines for animal care and maintenance

    Comparable Ages for the Independent Origins of Electrogenesis in African and South American Weakly Electric Fishes

    Get PDF
    One of the most remarkable examples of convergent evolution among vertebrates is illustrated by the independent origins of an active electric sense in South American and African weakly electric fishes, the Gymnotiformes and Mormyroidea, respectively. These groups independently evolved similar complex systems for object localization and communication via the generation and reception of weak electric fields. While good estimates of divergence times are critical to understanding the temporal context for the evolution and diversification of these two groups, their respective ages have been difficult to estimate due to the absence of an informative fossil record, use of strict molecular clock models in previous studies, and/or incomplete taxonomic sampling. Here, we examine the timing of the origins of the Gymnotiformes and the Mormyroidea using complete mitogenome sequences and a parametric Bayesian method for divergence time reconstruction. Under two different fossil-based calibration methods, we estimated similar ages for the independent origins of the Mormyroidea and Gymnotiformes. Our absolute estimates for the origins of these groups either slightly postdate, or just predate, the final separation of Africa and South America by continental drift. The most recent common ancestor of the Mormyroidea and Gymnotiformes was found to be a non-electrogenic basal teleost living more than 85 millions years earlier. For both electric fish lineages, we also estimated similar intervals (16–19 or 22–26 million years, depending on calibration method) between the appearance of electroreception and the origin of myogenic electric organs, providing rough upper estimates for the time periods during which these complex electric organs evolved de novo from skeletal muscle precursors. The fact that the Gymnotiformes and Mormyroidea are of similar age enhances the comparative value of the weakly electric fish system for investigating pathways to evolutionary novelty, as well as the influences of key innovations in communication on the process of species radiation

    The population genetics of crypsis in vertebrates: recent insights from mice, hares, and lizards

    No full text
    By combining well-established population genetic theory with high-throughput sequencing data from natural populations, major strides have recently been made in understanding how, why, and when vertebrate populations evolve crypsis. Here, we focus on background matching, a particular facet of crypsis that involves the ability of an organism to conceal itself through matching its color to the surrounding environment. While interesting in and of itself, the study of this phenotype has also provided fruitful population genetic insights into the interplay of strong positive selection with other evolutionary processes. Specifically, and predicated upon the findings of previous candidate gene association studies, a primary focus of this recent literature involves the realization that the inference of selection from DNA sequence data first requires a robust model of population demography in order to identify genomic regions which do not conform to neutral expectations. Moreover, these demographic estimates provide crucial information about the origin and timing of the onset of selective pressures associated with, for example, the colonization of a novel environment. Furthermore, such inference has revealed crypsis to be a particularly useful phenotype for investigating the interplay of migration and selection-with examples of gene flow constraining rates of adaptation, or alternatively providing the genetic variants that may ultimately sweep through the population. Here, we evaluate the underlying evidence, review the strengths and weaknesses of the many population genetic methodologies used in these studies, and discuss how these insights have aided our general understanding of the evolutionary process

    Using indirect methods to constrain symbiotic nitrogen fixation rates : a case study from an Amazonian rain forest

    Get PDF
    © The Authors 2009. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Biogeochemistry 99 (2010): 1-13, doi:10.1007/s10533-009-9392-y.Human activities have profoundly altered the global nitrogen (N) cycle. Increases in anthropogenic N have had multiple effects on the atmosphere, on terrestrial, freshwater and marine ecosystems, and even on human health. Unfortunately, methodological limitations challenge our ability to directly measure natural N inputs via biological N fixation (BNF)—the largest natural source of new N to ecosystems. This confounds efforts to quantify the extent of anthropogenic perturbation to the N cycle. To address this gap, we used a pair of indirect methods—analytical modeling and N balance—to generate independent estimates of BNF in a presumed hotspot of N fixation, a tropical rain forest site in central Rondônia in the Brazilian Amazon Basin. Our objectives were to attempt to constrain symbiotic N fixation rates in this site using indirect methods, and to assess strengths and weaknesses of this approach by looking for areas of convergence and disagreement between the estimates. This approach yielded two remarkably similar estimates of N fixation. However, when compared to a previously published bottom-up estimate, our analysis indicated much lower N inputs via symbiotic BNF in the Rondônia site than has been suggested for the tropics as a whole. This discrepancy may reflect errors associated with extrapolating bottom-up fluxes from plot-scale measures, those resulting from the indirect analyses, and/or the relatively low abundance of legumes at the Rondônia site. While indirect methods have some limitations, we suggest that until the technological challenges of directly measuring N fixation are overcome, integrated approaches that employ a combination of model-generated and empirically-derived data offer a promising way of constraining N inputs via BNF in natural ecosystems.We acknowledge and are grateful for financial support from the Andrew W. Mellon Foundation (C.C. and B.H.), the National Science Foundation (NSF DEB-0515744 to C.C. and A.T. and DEB-0315656 to C.N.), and the NASA LBA Program (NCC5-285 to C.N.)
    corecore