595 research outputs found
Switching roles: the functional plasticity of adult tissue stem cells.
Adult organisms have to adapt to survive, and the same is true for their tissues. Rates and types of cell production must be rapidly and reversibly adjusted to meet tissue demands in response to both local and systemic challenges. Recent work reveals how stem cell (SC) populations meet these requirements by switching between functional states tuned to homoeostasis or regeneration. This plasticity extends to differentiating cells, which are capable of reverting to SCs after injury. The concept of the niche, the micro-environment that sustains and regulates stem cells, is broadening, with a new appreciation of the role of physical factors and hormonal signals. Here, we review different functions of SCs, the cellular mechanisms that underlie them and the signals that bias the fate of SCs as they switch between roles.We thank J. Fowler, J. Frede, P. Greulich, A.M. Klein, K. Murai, B.D. Simons and D.J. Winton for discussions. We acknowledge the support of the Medical Research Council, the Wellcome Trust (Project grant WT090334MA, P.H.J. and PhD studentship Programme in Stem Cell Biology & Medicine, A.W.) and Cancer Research UK (Programme Grant C609/A17257, P.H.J.).This is the author accepted manuscript. The final version is available via EMBO at http://emboj.embopress.org/content/34/9/1164.long#ack-1
Logics of Finite Hankel Rank
We discuss the Feferman-Vaught Theorem in the setting of abstract model
theory for finite structures. We look at sum-like and product-like binary
operations on finite structures and their Hankel matrices. We show the
connection between Hankel matrices and the Feferman-Vaught Theorem. The largest
logic known to satisfy a Feferman-Vaught Theorem for product-like operations is
CFOL, first order logic with modular counting quantifiers. For sum-like
operations it is CMSOL, the corresponding monadic second order logic. We
discuss whether there are maximal logics satisfying Feferman-Vaught Theorems
for finite structures.Comment: Appeared in YuriFest 2015, held in honor of Yuri Gurevich's 75th
birthday. The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-23534-9_1
Prime movers : mechanochemistry of mitotic kinesins
Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation
Extensive telomere erosion is consistent with localised clonal expansions in Barrett’s metaplasia
Barrett’s oesophagus is a premalignant metaplastic condition that predisposes patients to the development of oesophageal adenocarcinoma. However, only a minor fraction of Barrett’s oesophagus patients progress to adenocarcinoma and it is thus essential to determine bio-molecular markers that can predict the progression of this condition. Telomere dysfunction is considered to drive clonal evolution in several tumour types and telomere length analysis provides clinically relevant prognostic and predictive information. The aim of this work was to use high-resolution telomere analysis to examine telomere dynamics in Barrett’s oesophagus. Telomere length analysis of XpYp, 17p, 11q and 9p, chromosome arms that contain key cancer related genes that are known to be subjected to copy number changes in Barrett’s metaplasia, revealed similar profiles at each chromosome end, indicating that no one specific telomere is likely to suffer preferential telomere erosion. Analysis of patient matched tissues (233 samples from 32 patients) sampled from normal squamous oesophagus, Z-line, and 2 cm intervals within Barrett’s metaplasia, plus oesophago-gastric junction, gastric body and antrum, revealed extensive telomere erosion in Barrett’s metaplasia to within the length ranges at which telomere fusion is detected in other tumour types. Telomere erosion was not uniform, with distinct zones displaying more extensive erosion and more homogenous telomere length profiles. These data are consistent with an extensive proliferative history of cells within Barrett’s metaplasia and are indicative of localised clonal growth. The extent of telomere erosion highlights the potential of telomere dysfunction to drive genome instability and clonal evolution in Barrett’s metaplasia
Seasonality of Leaf and Fig Production in Ficus squamosa, a Fig Tree with Seeds Dispersed by Water
The phenology of plants reflects selection generated by seasonal climatic factors and interactions with other plants and animals, within constraints imposed by their phylogenetic history. Fig trees (Ficus) need to produce figs year-round to support their short-lived fig wasp pollinators, but this requirement is partially de-coupled in dioecious species, where female trees only develop seeds, not pollinator offspring. This allows female trees to concentrate seed production at more favorable times of the year. Ficus squamosa is a riparian species whose dispersal is mainly by water, rather than animals. Seeds can float and travel in long distances. We recorded the leaf and reproductive phenology of 174 individuals for three years in Chiang Mai, Northern Thailand. New leaves were produced throughout the year. Fig production occurred year-round, but with large seasonal variations that correlated with temperature and rainfall. Female and male trees initiated maximal fig crops at different times, with production in female trees confined mainly to the rainy season and male figs concentrating fig production in the preceding months, but also often bearing figs continually. Ficus squamosa concentrates seed production by female plants at times when water levels are high, favouring dispersal by water, and asynchronous flowering within male trees allow fig wasps to cycle there, providing them with potential benefits by maintaining pollinators for times when female figs become available to pollinate
Case of a sigmoid colon cancer with metachronous metastases to the mesorectum and the abdominal wall
<p>Abstract</p> <p>Backround</p> <p>Sigmoid colon cancer metachronous metastases commonly occur in the liver and lungs with sporadic reports also to the spleen, stomach, thyroid gland, abdominal wall and upper urinary tract. This is a rare case of metachronous metastases invading the mesorectum and the abdominal wall.</p> <p>Case presentation</p> <p>A 72-year-old female underwent sigmoidectomy for stage I (T2N0 M0) sigmoid colon cancer in May 2008. In June 2009, an abdominal computed tomography scan revealed a tumor 2 cm in size at the lower anterior mesorectum and a second mass 2 cm in size at the anterior abdominal wall midline. Total colonoscopy showed no mucosal lesion. The serum carcinoembryonic antigen level was normal. A biopsy of the mesorectum tumor showed similar histologic characteristics with the primary tumor. Since no other site of recurrence was identified, an abdominoperineal resection was attempted. During the operation and after the removal of the incision recurrence, sinus bradycardia and signs of myocardial ischemia were noticed. A loop transverse colostomy was immediately perfomed and the operation was terminated. Postoperative cardiologic examination revealed an acute myocardium infract. Chemo-radiation of the mesorectum tumor and re-evaluation for surgical excision was decided.</p> <p>Conclusion</p> <p>Metachronous metastasis of the mesorectum from sigmoid colon cancer is extremely rare. Although patterns of lymphatic spread from rectal cancer to sigmoid colon have recently been demonstrated, there is no evidence of metachronous mesorectum invasion from sigmoid colon cancer. This could be the issue for future trials.</p
Recommended from our members
Increased brain expression of GPNMB is associated with genome wide significant risk for Parkinson's disease on chromosome 7p15.3
Genome wide association studies (GWAS) for Parkinson's disease (PD) have previously revealed a significant association with a locus on chromosome 7p15.3, initially designated as the glycoprotein non-metastatic melanoma protein B (GPNMB) locus. In this study, the functional consequences of this association on expression were explored in depth by integrating different expression quantitative trait locus (eQTL) datasets (Braineac, CAGEseq, GTEx, and Phenotype-Genotype Integrator (PheGenI)). Top risk SNP rs199347 eQTLs demonstrated increased expressions of GPNMB, KLHL7, and NUPL2 with the major allele (AA) in brain, with most significant eQTLs in cortical regions, followed by putamen. In addition, decreased expression of the antisense RNA KLHL7-AS1 was observed in GTEx. Furthermore, rs199347 is an eQTL with long non-coding RNA (AC005082.12) in human tissues other than brain. Interestingly, transcript-specific eQTLs in immune-related tissues (spleen and lymphoblastoid cells) for NUPL2 and KLHL7-AS1 were observed, which suggests a complex functional role of this eQTL in specific tissues, cell types at specific time points. Significantly increased expression of GPNMB linked to rs199347 was consistent across all datasets, and taken in combination with the risk SNP being located within the GPNMB gene, these results suggest that increased expression of GPNMB is the causative link explaining the association of this locus with PD. However, other transcript eQTLs and subsequent functional roles cannot be excluded. This highlights the importance of further investigations to understand the functional interactions between the coding genes, antisense, and non-coding RNA species considering the tissue and cell-type specificity to understand the underlying biological mechanisms in PD
The deployment of a tissue request tracking system for the CHTN: a case study in managing change in informatics for biobanking operations
Moving Your Sons to Safety: Galls Containing Male Fig Wasps Expand into the Centre of Figs, Away From Enemies
Figs are the inflorescences of fig trees (Ficus spp., Moraceae). They are shaped like a hollow ball, lined on their inner surface by numerous tiny female flowers. Pollination is carried out by host-specific fig wasps (Agaonidae). Female pollinators enter the figs through a narrow entrance gate and once inside can walk around on a platform generated by the stigmas of the flowers. They lay their eggs into the ovules, via the stigmas and styles, and also gall the flowers, causing the ovules to expand and their pedicels to elongate. A single pollinator larva develops in each galled ovule. Numerous species of non-pollinating fig wasps (NPFW, belonging to other families of Chalcidoidea) also make use of galled ovules in the figs. Some initiate galls, others make use of pollinator-generated galls, killing pollinator larvae. Most NPFW oviposit from the outside of figs, making peripherally-located pollinator larvae more prone to attack. Style length variation is high among monoecious Ficus spp. and pollinators mainly oviposit into more centrally-located ovules, with shorter styles. Style length variation is lower in male (wasp-producing) figs of dioecious Ficus spp., making ovules equally vulnerable to attack by NPFW at the time that pollinators oviposit
- …
