6,749 research outputs found
Annealing study of A1/GaSb contact with the use of doppler broadening technique
Using a monoenergetic positron beam, annealing study of the Al/n-GaSb system was performed by monitoring the Doppler broadening of the annihilation radiation as a function of the positron implanting energy. The S-parameter against positron energy data was successfully fitted by a three-layer model (Al/interface/GaSb). The annealing out of the open volume defects in the polycrystalline Al layer was revealed by the decrease in the S-parameter and the increase in the effective diffusion length of the Al layer. For the as-deposited samples, a∼5 nm interfacial region with S-parameter larger than those of the Al overlayer and the bulk was identified. After the 400^ºC annealing, this interfacial region extends to over 40 nm and its S-parameter dramatically drops. This is possibly due to the new phase formation at the interface. Annealing behaviors of SB and L+,B of the GaSb bulk showed the annealing out of positron traps (possibly the VGa-related defect) at 250ºC. However, a further annealing at 400ºC induces the formation of positron traps, which are possibly of another kind of VGa-related defect and the positron shallow trap GaSb antisite.published_or_final_versionProceedings of the 35th Polish Seminar on Positron Annihilation (PSPA), Turawa, Poland, 20-24 September 2004. In Acta Physica Polonica Series A: General Physics, Physics of Condensed Matter, Optics and Quantum Electronics, Atomic and Molecular Physics, Applied Physics, 2005, v. 107 n. 5, p. 874-87
Reflections on Tiles (in Self-Assembly)
We define the Reflexive Tile Assembly Model (RTAM), which is obtained from
the abstract Tile Assembly Model (aTAM) by allowing tiles to reflect across
their horizontal and/or vertical axes. We show that the class of directed
temperature-1 RTAM systems is not computationally universal, which is
conjectured but unproven for the aTAM, and like the aTAM, the RTAM is
computationally universal at temperature 2. We then show that at temperature 1,
when starting from a single tile seed, the RTAM is capable of assembling n x n
squares for n odd using only n tile types, but incapable of assembling n x n
squares for n even. Moreover, we show that n is a lower bound on the number of
tile types needed to assemble n x n squares for n odd in the temperature-1
RTAM. The conjectured lower bound for temperature-1 aTAM systems is 2n-1.
Finally, we give preliminary results toward the classification of which finite
connected shapes in Z^2 can be assembled (strictly or weakly) by a singly
seeded (i.e. seed of size 1) RTAM system, including a complete classification
of which finite connected shapes be strictly assembled by a "mismatch-free"
singly seeded RTAM system.Comment: New results which classify the types of shapes which can
self-assemble in the RTAM have been adde
Optimal Receiver Antenna Location in Indoor Environment Using Dynamic Differential Evolution and Genetic Algorithm
[[abstract]]Using the impulse responses of these multipath channels, the bit error rate (BER) performance for binary pulse amplitude modulation impulse radio ultra-wideband communication system is calculated. The optimization location of receiving antenna is investigated by dynamic differential evolution (DDE) and genetic algorithm (GA) to minimize the outage probability. Numerical results show that the performance for reducing BER and outage probability by DDE algorithm is better than that by GA.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子
Blockade of cannabinoid 1 receptor improves glucose responsiveness in pancreatic beta cells
Cannabinoid 1 receptors (CB1Rs) are expressed in peripheral tissues, including islets of Langerhans, where their function(s) is under scrutiny. Using mouse beta-cell lines, human islets and CB1R-null (CB1R(-/-)) mice, we have now investigated the role of CB1Rs in modulating beta-cell function and glucose responsiveness. Synthetic CB1R agonists diminished GLP-1-mediated cAMP accumulation and insulin secretion as well as glucose-stimulated insulin secretion in mouse beta-cell lines and human islets. In addition, silencing CB1R in mouse cells resulted in an increased expression of pro-insulin, glucokinase (GCK) and glucose transporter 2 (GLUT2), but this increase was lost in cells lacking insulin receptor. Furthermore, CB1R(-/-) mice had increased pro-insulin, GCK and GLUT2 expression in cells. Our results suggest that CB1R signalling in pancreatic islets may be harnessed to improve beta-cell glucose responsiveness and preserve their function. Thus, our findings further support that blocking peripheral CB1Rs would be beneficial to beta-cell function in type 2 diabetes
Adaptive Evolution of the Myo6 Gene in Old World Fruit Bats (Family: Pteropodidae)
PMCID: PMC3631194This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Accretion of Planetary Material onto Host Stars
Accretion of planetary material onto host stars may occur throughout a star's
life. Especially prone to accretion, extrasolar planets in short-period orbits,
while relatively rare, constitute a significant fraction of the known
population, and these planets are subject to dynamical and atmospheric
influences that can drive significant mass loss. Theoretical models frame
expectations regarding the rates and extent of this planetary accretion. For
instance, tidal interactions between planets and stars may drive complete
orbital decay during the main sequence. Many planets that survive their stars'
main sequence lifetime will still be engulfed when the host stars become red
giant stars. There is some observational evidence supporting these predictions,
such as a dearth of close-in planets around fast stellar rotators, which is
consistent with tidal spin-up and planet accretion. There remains no clear
chemical evidence for pollution of the atmospheres of main sequence or red
giant stars by planetary materials, but a wealth of evidence points to active
accretion by white dwarfs. In this article, we review the current understanding
of accretion of planetary material, from the pre- to the post-main sequence and
beyond. The review begins with the astrophysical framework for that process and
then considers accretion during various phases of a host star's life, during
which the details of accretion vary, and the observational evidence for
accretion during these phases.Comment: 18 pages, 5 figures (with some redacted), invited revie
Identification and characterization of a novel non-structural protein of bluetongue virus
Bluetongue virus (BTV) is the causative agent of a major disease of livestock (bluetongue). For over two decades, it has been widely accepted that the 10 segments of the dsRNA genome of BTV encode for 7 structural and 3 non-structural proteins. The non-structural proteins (NS1, NS2, NS3/NS3a) play different key roles during the viral replication cycle. In this study we show that BTV expresses a fourth non-structural protein (that we designated NS4) encoded by an open reading frame in segment 9 overlapping the open reading frame encoding VP6. NS4 is 77–79 amino acid residues in length and highly conserved among several BTV serotypes/strains. NS4 was expressed early post-infection and localized in the nucleoli of BTV infected cells. By reverse genetics, we showed that NS4 is dispensable for BTV replication in vitro, both in mammalian and insect cells, and does not affect viral virulence in murine models of bluetongue infection. Interestingly, NS4 conferred a replication advantage to BTV-8, but not to BTV-1, in cells in an interferon (IFN)-induced antiviral state. However, the BTV-1 NS4 conferred a replication advantage both to a BTV-8 reassortant containing the entire segment 9 of BTV-1 and to a BTV-8 mutant with the NS4 identical to the homologous BTV-1 protein. Collectively, this study suggests that NS4 plays an important role in virus-host interaction and is one of the mechanisms played, at least by BTV-8, to counteract the antiviral response of the host. In addition, the distinct nucleolar localization of NS4, being expressed by a virus that replicates exclusively in the cytoplasm, offers new avenues to investigate the multiple roles played by the nucleolus in the biology of the cell
Generation and quality control of lipidomics data for the alzheimers disease neuroimaging initiative cohort.
Alzheimers disease (AD) is a major public health priority with a large socioeconomic burden and complex etiology. The Alzheimer Disease Metabolomics Consortium (ADMC) and the Alzheimer Disease Neuroimaging Initiative (ADNI) aim to gain new biological insights in the disease etiology. We report here an untargeted lipidomics of serum specimens of 806 subjects within the ADNI1 cohort (188 AD, 392 mild cognitive impairment and 226 cognitively normal subjects) along with 83 quality control samples. Lipids were detected and measured using an ultra-high-performance liquid chromatography quadruple/time-of-flight mass spectrometry (UHPLC-QTOF MS) instrument operated in both negative and positive electrospray ionization modes. The dataset includes a total 513 unique lipid species out of which 341 are known lipids. For over 95% of the detected lipids, a relative standard deviation of better than 20% was achieved in the quality control samples, indicating high technical reproducibility. Association modeling of this dataset and available clinical, metabolomics and drug-use data will provide novel insights into the AD etiology. These datasets are available at the ADNI repository at http://adni.loni.usc.edu/
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Measurement of CP-violation asymmetries in D0 to Ks pi+ pi-
We report a measurement of time-integrated CP-violation asymmetries in the
resonant substructure of the three-body decay D0 to Ks pi+ pi- using CDF II
data corresponding to 6.0 invfb of integrated luminosity from Tevatron ppbar
collisions at sqrt(s) = 1.96 TeV. The charm mesons used in this analysis come
from D*+(2010) to D0 pi+ and D*-(2010) to D0bar pi-, where the production
flavor of the charm meson is determined by the charge of the accompanying pion.
We apply a Dalitz-amplitude analysis for the description of the dynamic decay
structure and use two complementary approaches, namely a full Dalitz-plot fit
employing the isobar model for the contributing resonances and a
model-independent bin-by-bin comparison of the D0 and D0bar Dalitz plots. We
find no CP-violation effects and measure an asymmetry of ACP = (-0.05 +- 0.57
(stat) +- 0.54 (syst))% for the overall integrated CP-violation asymmetry,
consistent with the standard model prediction.Comment: 15 page
- …
