58 research outputs found
Thermalisation of a two-dimensional photonic gas in a 'white-wall' photon box
Bose-Einstein condensation, the macroscopic accumulation of bosonic particles
in the energetic ground state below a critical temperature, has been
demonstrated in several physical systems. The perhaps best known example of a
bosonic gas, blackbody radiation, however exhibits no Bose-Einstein
condensation at low temperatures. Instead of collectively occupying the lowest
energy mode, the photons disappear in the cavity walls when the temperature is
lowered - corresponding to a vanishing chemical potential. Here we report on
evidence for a thermalised two-dimensional photon gas with freely adjustable
chemical potential. Our experiment is based on a dye filled optical
microresonator, acting as a 'white-wall' box for photons. Thermalisation is
achieved in a photon number-conserving way by photon scattering off the
dye-molecules, and the cavity mirrors both provide an effective photon mass and
a confining potential - key prerequisites for the Bose-Einstein condensation of
photons. As a striking example for the unusual system properties, we
demonstrate a yet unobserved light concentration effect into the centre of the
confining potential, an effect with prospects for increasing the efficiency of
diffuse solar light collection.Comment: 15 pages, 3 figure
Bose-Einstein condensation of photons in an optical microcavity
Bose-Einstein condensation, the macroscopic ground state accumulation of
particles with integer spin (bosons) at low temperature and high density, has
been observed in several physical systems, including cold atomic gases and
solid state physics quasiparticles. However, the most omnipresent Bose gas,
blackbody radiation (radiation in thermal equilibrium with the cavity walls)
does not show this phase transition, because the chemical potential of photons
vanishes and, when the temperature is reduced, photons disappear in the cavity
walls. Theoretical works have considered photon number conserving
thermalization processes, a prerequisite for Bose-Einstein condensation, using
Compton scattering with a gas of thermal electrons, or using photon-photon
scattering in a nonlinear resonator configuration. In a recent experiment, we
have observed number conserving thermalization of a two-dimensional photon gas
in a dye-filled optical microcavity, acting as a 'white-wall' box for photons.
Here we report on the observation of a Bose-Einstein condensation of photons in
a dye-filled optical microcavity. The cavity mirrors provide both a confining
potential and a non-vanishing effective photon mass, making the system formally
equivalent to a two-dimensional gas of trapped, massive bosons. By multiple
scattering off the dye molecules, the photons thermalize to the temperature of
the dye solution (room temperature). Upon increasing the photon density we
observe the following signatures for a BEC of photons: Bose-Einstein
distributed photon energies with a massively populated ground state mode on top
of a broad thermal wing, the phase transition occurring both at the expected
value and exhibiting the predicted cavity geometry dependence, and the ground
state mode emerging even for a spatially displaced pump spot
Managing co-morbid depression and anxiety in primary care patients with asthma and/or chronic obstructive pulmonary disease: study protocol for a randomized controlled trial
Rapamycin toxicity in MIN6 cells and rat and human islets is mediated by the inhibition of mTOR complex 2 (mTORC2)
Aims/hypothesis Rapamycin (sirolimus) is one of the primary immunosuppressants for islet transplantation. Yet there is evidence that the long-term treatment of islet-transplant patients with rapamycin may be responsible for subsequent loss of islet graft function and viability. Therefore, the primary objective of this study was to elucidate the molecular mechanism of rapamycin toxicity in beta cells. Methods Experiments were performed on isolated rat and human islets of Langerhans and MIN6 cells. The effects of rapamycin and the roles of mammalian target of rapamycin complex 2 (mTORC2)/protein kinase B (PKB) on beta cell signalling, function and viability were investigated using cell viability assays, insulin ELISA assays, kinase assays, western blotting, pharmacological inhibitors, small interfering (si)RNA and through the overproduction of a constitutively active mutant of PKB
Cardiomyocyte Specific Ablation of p53 Is Not Sufficient to Block Doxorubicin Induced Cardiac Fibrosis and Associated Cytoskeletal Changes
Doxorubicin (Dox) is an anthracycline used to effectively treat several forms of cancer. Unfortunately, the use of Dox is limited due to its association with cardiovascular complications which are manifested as acute and chronic cardiotoxicity. The pathophysiological mechanism of Dox induced cardiotoxicity appears to involve increased expression of the tumor suppressor protein p53 in cardiomyocytes, followed by cellular apoptosis. It is not known whether downregulation of p53 expression in cardiomyocytes would result in decreased rates of myocardial fibrosis which occurs in response to cardiomyocyte loss. Further, it is not known whether Dox can induce perivascular necrosis and associated fibrosis in the heart. In this study we measured the effects of acute Dox treatment on myocardial and perivascular apoptosis and fibrosis in a conditional knockout (CKO) mouse model system which harbours inactive p53 alleles specifically in cardiomyocytes. CKO mice treated with a single dose of Dox (20 mg/kg), did not display lower levels of myocardial apoptosis or reactive oxygen and nitrogen species (ROS/RNS) compared to control mice with intact p53 alleles. Interestingly, CKO mice also displayed higher levels of interstitial and perivascular fibrosis compared to controls 3 or 7 days after Dox treatment. Additionally, the decrease in levels of the microtubule protein α-tubulin, which occurs in response to Dox treatment, was not prevented in CKO mice. Overall, these results indicate that selective loss of p53 in cardiomyocytes is not sufficient to prevent Dox induced myocardial ROS/RNS generation, apoptosis, interstitial fibrosis and perivascular fibrosis. Further, these results support a role for p53 independent apoptotic pathways leading to Dox induced myocardial damage and highlight the importance of vascular lesions in Dox induced cardiotoxicity
Effects of Subthalamic Nucleus Lesions and Stimulation upon Corticostriatal Afferents in the 6-Hydroxydopamine-Lesioned Rat
Abnormalities of striatal glutamate neurotransmission may play a role in the pathophysiology of Parkinson's disease and may respond to neurosurgical interventions, specifically stimulation or lesioning of the subthalamic nucleus (STN). The major glutamatergic afferent pathways to the striatum are from the cortex and thalamus, and are thus likely to be sources of striatal neuronally-released glutamate. Corticostriatal terminals can be distinguished within the striatum at the electron microscopic level as their synaptic vesicles contain the vesicular glutamate transporter, VGLUT1. The majority of terminals which are immunolabeled for glutamate but are not VGLUT1 positive are likely to be thalamostriatal afferents. We compared the effects of short term, high frequency, STN stimulation and lesioning in 6-hydroxydopamine (6OHDA)-lesioned rats upon striatal terminals immunolabeled for both presynaptic glutamate and VGLUT1. 6OHDA lesions resulted in a small but significant increase in the proportions of VGLUT1-labeled terminals making synapses on dendritic shafts rather than spines. STN stimulation for one hour, but not STN lesions, increased the proportion of synapses upon spines. The density of presynaptic glutamate immuno-gold labeling was unchanged in both VGLUT1-labeled and -unlabeled terminals in 6OHDA-lesioned rats compared to controls. Rats with 6OHDA lesions+STN stimulation showed a decrease in nerve terminal glutamate immuno-gold labeling in both VGLUT1-labeled and -unlabeled terminals. STN lesions resulted in a significant decrease in the density of presynaptic immuno-gold-labeled glutamate only in VGLUT1-labeled terminals. STN interventions may achieve at least part of their therapeutic effect in PD by normalizing the location of corticostriatal glutamatergic terminals and by altering striatal glutamatergic neurotransmission
A reappraisal of instrumental magnetic measurements made in Western Europe before AD 1750: confronting historical geomagnetism and archeomagnetism
In vivo postprandial lipid partitioning in liver and skeletal muscle in prediabetic and diabetic rats
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
Interrogating open issues in cancer precision medicine with patient-derived xenografts
- …
