139 research outputs found

    A novel algorithm for dynamic student profile adaptation based on learning styles

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.E-learning recommendation systems are used to enhance student performance and knowledge by providing tailor- made services based on the students’ preferences and learning styles, which are typically stored in student profiles. For such systems to remain effective, the profiles need to be able to adapt and reflect the students’ changing behaviour. In this paper, we introduce new algorithms that are designed to track student learning behaviour patterns, capture their learning styles, and maintain dynamic student profiles within a recommendation system (RS). This paper also proposes a new method to extract features that characterise student behaviour to identify students’ learning styles with respect to the Felder-Silverman learning style model (FSLSM). In order to test the efficiency of the proposed algorithm, we present a series of experiments that use a dataset of real students to demonstrate how our proposed algorithm can effectively model a dynamic student profile and adapt to different student learning behaviour. The results revealed that the students could effectively increase their learning efficiency and quality for the courses when the learning styles are identified, and proper recommendations are made by using our method

    Antibody-free magnetic cell sorting of genetically modified primary human CD4+ T cells by one-step streptavidin affinity purification.

    Get PDF
    Existing methods for phenotypic selection of genetically modified mammalian cells suffer disadvantages of time, cost and scalability and, where antibodies are used to bind exogenous cell surface markers for magnetic selection, typically yield cells coated with antibody-antigen complexes and beads. To overcome these limitations we have developed a method termed Antibody-Free Magnetic Cell Sorting in which the 38 amino acid Streptavidin Binding Peptide (SBP) is displayed at the cell surface by the truncated Low Affinity Nerve Growth Receptor (LNGFRF) and used as an affinity tag for one-step selection with streptavidin-conjugated magnetic beads. Cells are released through competition with the naturally occurring vitamin biotin, free of either beads or antibody-antigen complexes and ready for culture or use in downstream applications. Antibody-Free Magnetic Cell Sorting is a rapid, cost-effective, scalable method of magnetic selection applicable to either viral transduction or transient transfection of cell lines or primary cells. We have optimised the system for enrichment of primary human CD4+ T cells expressing shRNAs and exogenous genes of interest to purities of >99%, and used it to isolate cells following Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 genome editing

    Do New Drugs Increase Life Expectancy? A Critique of a Manhattan Institute Paper

    Get PDF
    A recent study published by the Manhattan Institute “Why Has Longevity Increased More in Some States than in Others? The Role of Medical Innovation and Other Factors,” purported to show that the more rapid adoption of new drugs has substantial benefits in the form of increased life expectancy, higher productivity and lower non-drug health care expenditures. This study has been cited as evidence supporting the more rapid acceptance of new drugs in Medicaid, Medicare, and other public programs and has helped to shape public debate on the value of new drugs. This analysis questions the key conclusions of the study. It points out that the key statistical regressions appear to be misspecified, since they show anomalies such as a negative correlation between income growth and life expectancy and find no relationship between education and productivity growth. Methodological flaws addressed include lack of adjustment for infant mortality rates; inadequate proxy measures of health status; lack of adjustment for ages of individuals and other sociodemographic factors; inherent problems with the definition of drug age, or ‘vintage;’ and the failure to consider reverse causation as an obvious explanation for several findings. The Manhattan Institute study does not provide reliable evidence for favoring adoption of newer drugs in either public or private health care programs

    A living scoping review and online repository of artificial intelligence models in pediatric urology:Results from the AI-PEDURO collaborative

    Get PDF
    Introduction: Artificial intelligence (AI) is increasingly being applied across pediatric urology. We provide a living scoping review and online repository developed by the AI in PEDiatric UROlogy (AI-PEDURO) collaborative that summarizes the current and emerging evidence on the AI models developed in pediatric urology. Material and methods: The protocol was published a priori, and Preferred Reporting Items for Systematic Review and Meta-analysis Scoping Review (PRISMA-ScR) guidelines were followed. We conducted a comprehensive search of four electronic databases and reviewed relevant data sources from inception until June 2024 to identify studies that have implemented AI for prediction, classification, or risk stratification for pediatric urology conditions. Model quality was assessed by the APPRAISE-AI tool. Results: Overall, 59 studies were included in this review from 1557 unique records. Of the 59 published studies, 44 studies (75 %) were published after 2019, with hydronephrosis and vesicoureteral reflux/urinary tract infection as the most common topics (17 studies, 28 % each). Studies originated from USA (22 studies, 37 %), Canada (10 studies, 17 %), China (8 studies, 14 %), and Turkey (7 studies, 12 %). Neural network (35 studies, 59 %), support-vector-machine (21 studies, 36 %), and tree-based models (19 studies, 32 %) were the most used machine learning algorithms, with 14 studies (24 %) providing useable repositories or applications. APPRAISE-AI assessed 12 studies (20 %) of studies as low quality, 39 studies (66 %) as moderate quality, and 8 studies (14 %) as high quality, with specific improvements noted in model robustness and reporting standards over time (p = 0.03). Findings were synthesized into an online repository (www.aipeduro.com). Discussion: There is an increasing pace of AI model development in pediatric urology. Model topics are broad, algorithm choice is diverse, and the overall quality of models are improving over time. While there is still a lack of clinical translation of the AI models in pediatric urology, the usage of online repositories and reporting frameworks can facilitate sharing, improvement, and clinical implementation of future models.Conclusions: This living scoping review and online repository will highlight the current landscape of AI models in pediatric urology and facilitate their clinical translation and inform future research initiatives. From this work, we provide a summary of recommendations based on the current literature for future studies.[Figure</p

    Free Brick1 Is a Trimeric Precursor in the Assembly of a Functional Wave Complex

    Get PDF
    Background: The Wave complex activates the Arp2/3 complex, inducing actin polymerization in lamellipodia and membrane ruffles. The Wave complex is composed of five subunits, the smallest of which, Brick1/Hspc300 (Brk1), is the least characterized. We previously reported that, unlike the other subunits, Brk1 also exists as a free form. Principal Findings: Here we report that this free form of Brk1 is composed of homotrimers. Using a novel assay in which purified free Brk1 is electroporated into HeLa cells, we were able to follow its biochemical fate in cells and to show that free Brk1 becomes incorporated into the Wave complex. Importantly, incorporation of free Brk1 into the Wave complex was blocked upon inhibition of protein synthesis and incorporated Brk1 was found to associate preferentially with neosynthesized subunits. Brk1 depleted HeLa cells were found to bleb, as were Nap1, Wave2 or ARPC2 depleted cells, suggesting that this blebbing phenotype of Brk1 depleted cells is due to an impairment of the Wave complex function rather than a specific function of free Brk1. Blebs of Brk1 depleted cells were emitted at sites where lamellipodia and membrane ruffles were normally emitted. In Brk1 depleted cells, the electroporation of free Brk1 was sufficient to restore Wave complex assembly and to rescue the blebbing phenotype. Conclusion: Together these results establish that the free form of Brk1 is an essential precursor in the assembly of

    Serum neurofilament light chain levels are associated with white matter integrity in autosomal dominant Alzheimer's disease

    Get PDF
    Neurofilament light chain (NfL) is a protein that is selectively expressed in neurons. Increased levels of NfL measured in either cerebrospinal fluid or blood is thought to be a biomarker of neuronal damage in neurodegenerative diseases. However, there have been limited investigations relating NfL to the concurrent measures of white matter (WM) decline that it should reflect. White matter damage is a common feature of Alzheimer's disease. We hypothesized that serum levels of NfL would associate with WM lesion volume and diffusion tensor imaging (DTI) metrics cross-sectionally in 117 autosomal dominant mutation carriers (MC) compared to 84 non-carrier (NC) familial controls as well as in a subset (N = 41) of MC with longitudinal NfL and MRI data. In MC, elevated cross-sectional NfL was positively associated with WM hyperintensity lesion volume, mean diffusivity, radial diffusivity, and axial diffusivity and negatively with fractional anisotropy. Greater change in NfL levels in MC was associated with larger changes in fractional anisotropy, mean diffusivity, and radial diffusivity, all indicative of reduced WM integrity. There were no relationships with NfL in NC. Our results demonstrate that blood-based NfL levels reflect WM integrity and supports the view that blood levels of NfL are predictive of WM damage in the brain. This is a critical result in improving the interpretability of NfL as a marker of brain integrity, and for validating this emerging biomarker for future use in clinical and research settings across multiple neurodegenerative diseases

    Defining the effect and mediators of two knowledge translation strategies designed to alter knowledge, intent and clinical utilization of rehabilitation outcome measures: a study protocol [NCT00298727]

    Get PDF
    BACKGROUND: A substantial number of valid outcome measures have been developed to measure health in adult musculoskeletal and childhood disability. Regrettably, national initiatives have merely resulted in changes in attitude, while utilization remains unacceptably low. This study will compare the effectiveness and mediators of two different knowledge transfer (KT) interventions in terms of their impact on changing knowledge and behavior (utilization and clinical reasoning) related to health outcome measures. METHOD/DESIGN: Physical and occupational therapists (n = 144) will be recruited in partnership with the national professional associations to evaluate two different KT interventions with the same curriculum: 1) Stakeholder-Hosted Interactive Problem-Based Seminar (SHIPS), and 2) Online Problem-Based course (e-PBL). SHIPS will consist of face-to-face problem-based learning (PBL) for 2 1/2 days with outcome measure developers as facilitators, using six problems generated in consultation with participants. The e-PBL will consist of a 6-week web-based course with six generic problems developed by content experts. SHIPS will be conducted in three urban centers in Canada. Participants will be block-allocated by a minimization procedure to either of the two interventions to minimize any prognostic differences. Trained evaluators at each site will conduct chart audits and chart-stimulated recall. Trained interviewers will conduct semi-structured interviews focused on identifying critical elements in KT and implementing practice changes. Interviews will be transcribed verbatim. Baseline predictors including demographics, knowledge, attitudes/barriers regarding outcome measures, and Readiness to Change will be assessed by self-report. Immediately post-intervention and 6 months later, these will be re-administered. Primary qualitative and quantitative evaluations will be conducted 6-months post-intervention to assess the relative effectiveness of KT interventions and to identify elements that contribute to changing clinical behavior. Chart audits will determine the utilization of outcome measures (counts). Incorporation of outcome measures into clinical reasoning will be assessed using an innovative technique: chart-stimulated recall. DISCUSSION: A strategy for optimal transfer of health outcome measures into practice will be developed and shared with multiple disciplines involved in primary and specialty management of musculoskeletal and childhood disability

    A comparison of a social support physical activity intervention in weight management among post-partum Latinas

    Get PDF
    BACKGROUND: Weight gain during the childbearing years and failure to lose pregnancy weight after birth contribute to the development of obesity in postpartum Latinas. METHODS: Madres para la Salud [Mothers for Health] was a 12-month, randomized controlled trial exploring a social support intervention with moderate-intensity physical activity (PA) seeking to effect changes in body fat, fat tissue inflammation, and depression symptoms in sedentary postpartum Latinas. This report describes the efficacy of the Madres intervention. RESULTS: The results show that while social support increased during the active intervention delivery, it declined to pre-intervention levels by the end of the intervention. There were significant achievements in aerobic and total steps across the 12 months of the intervention, and declines in body adiposity assessed with bioelectric impedance. CONCLUSIONS: Social support from family and friends mediated increases in aerobic PA resulting in decrease in percent body fat. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01908959
    corecore