12 research outputs found
Antibacterial properties of tualang honey and its effect in burn wound management: a comparative study
<p>Abstract</p> <p>Background</p> <p>The use of honey as a natural product of <it>Apis </it>spp. for burn treatment has been widely applied for centuries. Tualang honey has been reported to have antibacterial properties against various microorganisms, including those from burn-related diagnoses, and is cheaper and easier to be absorbed by Aquacel dressing. The aim of this study is to evaluate the potential antibacterial properties of tualang honey dressing and to determine its effectiveness as a partial thickness burn wound dressing.</p> <p>Methods</p> <p>In order to quantitate the bioburden of the swabs, pour plates were performed to obtain the colony count (CFU/ml). Swabs obtained from burn wounds were streaked on blood agar and MacConkey agar for bacterial isolation and identification. Later, antibacterial activity of Aquacel-tualang honey, Aquacel-Manuka honey, Aquacel-Ag and Aquacel- plain dressings against bacteria isolated from patients were tested (<it>in-vitro</it>) to see the effectiveness of those dressings by zone of inhibition assays.</p> <p>Results</p> <p>Seven organisms were isolated. Four types of Gram-negative bacteria, namely <it>Enterobacter cloacae</it>, <it>Klebsiella pneumoniae</it>, <it>Pseudomonas </it>spp. and <it>Acinetobacter </it>spp., and three Gram-positive bacteria, namely <it>Staphylococcus aureus</it>, coagulase-negative <it>Staphylococcus aureus </it>(CONS) and <it>Streptococcus </it>spp., were isolated. Total bacterial count decreased on day 6 and onwards. In the <it>in-vitro </it>antibacterial study, Aquacel-Ag and Aquacel-Manuka honey dressings gave better zone of inhibition for Gram positive bacteria compared to Aquacel-Tualang honey dressing. However, comparable results were obtained against Gram negative bacteria tested with Aquacel-Manuka honey and Aquacel-Tualang honey dressing.</p> <p>Conclusions</p> <p>Tualang honey has a bactericidal as well as bacteriostatic effect. It is useful as a dressing, as it is easier to apply and is less sticky compared to Manuka honey. However, for Gram positive bacteria, tualang honey is not as effective as usual care products such as silver-based dressing or medical grade honey dressing.</p
Optimization in offshore supply vessel planning
This paper considers the offshore supply vessel (OSV) planning problem, which consists of determining an optimal fleet size and mix of OSVs as well as their weekly routes and schedules for servicing offshore oil and gas installations. The work originates from a project with Statoil, the leading operator on the Norwegian continental shelf. We present both a new arc-flow and a voyage-based model for solving the OSV planning problem. A decision support tool based on the voyage-based model has been used by planners in Statoil, and cost savings from this was estimated to approximately 3 million USD/year. Weather conditions at the Norwegian continental shelf can be harsh; wave heights may limit both an OSV’s sailing speed and the time to perform unloading/loading operations at the installations. Hence, we analyze the weather impact on the execution of a schedule and propose robustness approaches to obtain solutions that can better withstand delays due to rough weather. Simulations indicate that such solutions both are more robust and have lower expected costs.acceptedVersio
A two-level evolutionary algorithm for solving the petrol station replenishment problem with periodicity constraints and service choice
This paper addresses the petrol station replenishment problem with periodicity constraints and introduces the frequency service choice as a decision variable. We present a mathematical optimization model for the problem and we develop first a simple heuristic method that is able to handle the complexity of the problem and then two metaheuristic approaches based on a novel two-level evolutionary algorithm. The first level deals with the periodicity and frequency selection of the visits to the petrol stations. The second level of evolution assigns the stations to the tank-trucks such that the total traveled distance is minimized. The effectiveness of the proposed approaches has been tested by means of a comprehensive experimental study by using first a set of randomly generated test cases and then a real-life problem. © 2018, Springer Science+Business Media, LLC, part of Springer Nature
High-throughput immuno-profiling of mamba (Dendroaspis) venom toxin epitopes using high-density peptide microarrays
Snakebite envenoming is a serious condition requiring medical attention and administration of
antivenom. Current antivenoms are antibody preparations obtained from the plasma of animals
immunised with whole venom(s) and contain antibodies against snake venom toxins, but also against
other antigens. In order to better understand the molecular interactions between antivenom antibodies
and epitopes on snake venom toxins, a high-throughput immuno-profiling study on all manually
curated toxins from Dendroaspis species and selected African Naja species was performed based on
custom-made high-density peptide microarrays displaying linear toxin fragments. By detection of
binding for three different antivenoms and performing an alanine scan, linear elements of epitopes
and the positions important for binding were identified. A strong tendency of antivenom antibodies
recognizing and binding to epitopes at the functional sites of toxins was observed. With these results,
high-density peptide microarray technology is for the first time introduced in the field of toxinology
and molecular details of the evolution of antibody-toxin interactions based on molecular recognition of
distinctive toxic motifs are elucidated.Novo Nordisk Foundation/[13OC0005613]/NNF/DinamarcaNovo Nordisk Foundation/[16OC0019248]/NNF/DinamarcaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP)UCR::Vicerrectoría de Docencia::Salud::Facultad de Microbiologí
Recommended from our members
Agile route-to-market distribution strategies in emerging markets: the case of Paraguay
The intensifying presence of multinational enterprises (MNEs) in emerging markets is of continued interest to strategy and international management scholars. In terms of theory, we know little about how proactive, agile route-to-market (RTM) decisions are made, developed and implemented to enable strategic renewal and sustainability in socio-economic contexts. Our aim in this paper is to understand the factors underpinning RTM agile capabilities, and how they influence the development of the agile distribution strategies of two competing consumer packaged goods multinational enterprises (CPG MNEs) (Mondelez International and Nestlé) in Paraguay. Drawing on the resource-based view (RBV), strategic agility and microfoundations perspectives, we examine their RTM adaptation approaches within the context of a common ‘product-market venture’ distribution in Paraguay. Methodologically, we undertake an inductive approach to interrogate the data and adopt a two-pronged examination of distribution-related archival data from these two MNEs, as well as interviewing 20 of their local senior managers, distributors and point-of-sale operators, as ‘knowledgeable agents’, in order to comprehend the market realities of the distribution-end of their value chain. Local contextual influences and RTM agile managerial capabilities, particularly those rooted at micro-market levels, have strong influences on the RTM strategies of these CPG MNEs in their devising of proactive, innovative and locally aligned or relevant ways to overcome local barriers to sustaining regeneration of their competitive advantages. We end by discussing how the insights presented in this paper extend the field of research in strategic agility in international distribution in different socio-economic contexts
Antibiofilm, Antifouling, and Anticorrosive Biomaterials and Nanomaterials for Marine Applications
Formation of biofilms is one of the most serious problems affecting the integrity of marine structures both onshore and offshore. These biofilms are the key reasons for fouling of marine structures. Biofilm and biofouling cause severe economic loss to the marine industry. It has been estimated that around 10% of fuel is additionally spent when the hull of ship is affected by fouling. However, the prevention and control treatments for biofilms and biofouling of marine structures often involve toxic materials which pose severe threat to the marine environment and are strictly regulated by international maritime conventions. In this context, biomaterials for the treatment of biofilms, fouling, and corrosion of marine structures assume much significance. In recent years, due to the technological advancements, various nanomaterials and nanostructures have revolutionized many of the biological applications including antibiofilm, antifouling, and anticorrosive applications in marine environment. Many of the biomaterials such as furanones and some polypeptides are found to have antibiofilm, antifouling, and anticorrosive potentials. Many of the nanomaterials such as metal (titanium, silver, zinc, copper, etc.) nanoparticles, nanocomposites, bioinspired nanomaterials, and metallic nanotubes were found to exhibit antifouling and anticorrosive applications in marine environment. Both biomaterials and nanomaterials have been used in the control and prevention of biofilms, biofouling, and corrosion in marine structures. In recent years, the biomaterials and nanomaterials were also characterized to have the ability to inhibit bacterial quorum sensing and thereby control biofilm formation, biofouling, and corrosion in marine structures. This chapter would provide an overview of the biomaterials from diverse sources and various category of nanomaterials for their use in antibiofilm, antifouling, and anticorrosion treatments with special reference to marine applications
