78 research outputs found
Grasping the changes seen in older adults when reaching for objects of varied texture.
Old age is associated with reduced mobility of the hand. To investigate age related decline when reaching-to-lift an object we used sophisticated kinematic apparatus to record reaches carried out by healthy older and younger participants. Three objects of different widths were placed at three different distances, with objects having either a high or low friction surface (i.e. rough or slippery). Older participants showed quantitative differences to their younger counterparts - movements were slower and peak speed did not scale with object distance. There were also qualitative differences with older adults showing a greater propensity to stop the hand and adjust finger position before lifting objects. The older participants particularly struggled to lift wide slippery objects, apparently due to an inability to manipulate their grasp to provide the level of precision necessary to functionally enclose the object. These data shed light on the nature of age related changes in reaching-to-grasp movements and establish a powerful technique for exploring how different product designs will impact on prehensile behavior
Heme oxygenase-1 and carbon monoxide in pulmonary medicine
Heme oxygenase-1 (HO-1), an inducible stress protein, confers cytoprotection against oxidative stress in vitro and in vivo. In addition to its physiological role in heme degradation, HO-1 may influence a number of cellular processes, including growth, inflammation, and apoptosis. By virtue of anti-inflammatory effects, HO-1 limits tissue damage in response to proinflammatory stimuli and prevents allograft rejection after transplantation. The transcriptional upregulation of HO-1 responds to many agents, such as hypoxia, bacterial lipopolysaccharide, and reactive oxygen/nitrogen species. HO-1 and its constitutively expressed isozyme, heme oxygenase-2, catalyze the rate-limiting step in the conversion of heme to its metabolites, bilirubin IXα, ferrous iron, and carbon monoxide (CO). The mechanisms by which HO-1 provides protection most likely involve its enzymatic reaction products. Remarkably, administration of CO at low concentrations can substitute for HO-1 with respect to anti-inflammatory and anti-apoptotic effects, suggesting a role for CO as a key mediator of HO-1 function. Chronic, low-level, exogenous exposure to CO from cigarette smoking contributes to the importance of CO in pulmonary medicine. The implications of the HO-1/CO system in pulmonary diseases will be discussed in this review, with an emphasis on inflammatory states
Genetic Variation at NCAN Locus Is Associated with Inflammation and Fibrosis in Non-Alcoholic Fatty Liver Disease in Morbid Obesity
Maximizing Weight Loss After Roux-en-Y Gastric Bypass May Decrease Risk of Incident Organ Cancer
- …
