89 research outputs found
Temporal resolution of protein–protein interactions in the live-cell plasma membrane
We have recently devised a method to quantify interactions between a membrane protein (“bait”) and a fluorophore-labeled protein (“prey”) directly in the live-cell plasma membrane (Schwarzenbacher et al. Nature Methods 5:1053–1060 2008). The idea is to seed cells on surfaces containing micro-patterned antibodies against the exoplasmic domain of the bait, and monitor the co-patterning of the fluorescent prey via fluorescence microscopy. Here, we characterized the time course of bait and prey micropattern formation upon seeding the cells onto the micro-biochip. Patterns were formed immediately after contact of the cells with the surface. Cells were able to migrate over the chip surface without affecting the micropattern contrast, which remained constant over hours. On single cells, bait contrast may be subject to fluctuations, indicating that the bait can be released from and recaptured on the micropatterns. We conclude that interaction studies can be performed at any time-point ranging from 5 min to several hours post seeding. Monitoring interactions with time opens up the possibility for new assays, which are briefly sketched in the discussion section
Estimating uncertainty in ecosystem budget calculations
© The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution-Noncommercial License. The definitive version was published in Ecosystems 13 (2010): 239-248, doi:10.1007/s10021-010-9315-8.Ecosystem nutrient budgets often report values for pools and fluxes without any indication of uncertainty, which makes it difficult to evaluate the significance of findings or make comparisons across systems. We present an example, implemented in Excel, of a Monte Carlo approach to estimating error in calculating the N content of vegetation at the Hubbard Brook Experimental Forest in New Hampshire. The total N content of trees was estimated at 847 kg ha−1 with an uncertainty of 8%, expressed as the standard deviation divided by the mean (the coefficient of variation). The individual sources of uncertainty were as follows: uncertainty in allometric equations (5%), uncertainty in tissue N concentrations (3%), uncertainty due to plot variability (6%, based on a sample of 15 plots of 0.05 ha), and uncertainty due to tree diameter measurement error (0.02%). In addition to allowing estimation of uncertainty in budget estimates, this approach can be used to assess which measurements should be improved to reduce uncertainty in the calculated values. This exercise was possible because the uncertainty in the parameters and equations that we used was made available by previous researchers. It is important to provide the error statistics with regression results if they are to be used in later calculations; archiving the data makes resampling analyses possible for future researchers. When conducted using a Monte Carlo framework, the analysis of uncertainty in complex calculations does not have to be difficult and should be standard practice when constructing ecosystem budgets
Nano-motion Dynamics are Determined by Surface-Tethered Selectin Mechanokinetics and Bond Formation
The interaction of proteins at cellular interfaces is critical for many biological processes, from intercellular signaling to cell adhesion. For example, the selectin family of adhesion receptors plays a critical role in trafficking during inflammation and immunosurveillance. Quantitative measurements of binding rates between surface-constrained proteins elicit insight into how molecular structural details and post-translational modifications contribute to function. However, nano-scale transport effects can obfuscate measurements in experimental assays. We constructed a biophysical simulation of the motion of a rigid microsphere coated with biomolecular adhesion receptors in shearing flow undergoing thermal motion. The simulation enabled in silico investigation of the effects of kinetic force dependence, molecular deformation, grouping adhesion receptors into clusters, surface-constrained bond formation, and nano-scale vertical transport on outputs that directly map to observable motions. Simulations recreated the jerky, discrete stop-and-go motions observed in P-selectin/PSGL-1 microbead assays with physiologic ligand densities. Motion statistics tied detailed simulated motion data to experimentally reported quantities. New deductions about biomolecular function for P-selectin/PSGL-1 interactions were made. Distributing adhesive forces among P-selectin/PSGL-1 molecules closely grouped in clusters was necessary to achieve bond lifetimes observed in microbead assays. Initial, capturing bond formation effectively occurred across the entire molecular contour length. However, subsequent rebinding events were enhanced by the reduced separation distance following the initial capture. The result demonstrates that vertical transport can contribute to an enhancement in the apparent bond formation rate. A detailed analysis of in silico motions prompted the proposition of wobble autocorrelation as an indicator of two-dimensional function. Insight into two-dimensional bond formation gained from flow cell assays might therefore be important to understand processes involving extended cellular interactions, such as immunological synapse formation. A biologically informative in silico system was created with minimal, high-confidence inputs. Incorporating random effects in surface separation through thermal motion enabled new deductions of the effects of surface-constrained biomolecular function. Important molecular information is embedded in the patterns and statistics of motion
Integrated Expression Profiling and ChIP-seq Analyses of the Growth Inhibition Response Program of the Androgen Receptor
Background: The androgen receptor (AR) plays important roles in the development of male phenotype and in different human diseases including prostate cancers. The AR can act either as a promoter or a tumor suppressor depending on cell types. The AR proliferative response program has been well studied, but its prohibitive response program has not yet been thoroughly studied. Methodology/Principal Findings: Previous studies found that PC3 cells expressing the wild-type AR inhibit growth and suppress invasion. We applied expression profiling to identify the response program of PC3 cells expressing the AR (PC3-AR) under different growth conditions (i.e. with or without androgens and at different concentration of androgens) and then applied the newly developed ChIP-seq technology to identify the AR binding regions in the PC3 cancer genome. A surprising finding was that the comparison of MOCK-transfected PC3 cells with AR-transfected cells identified 3,452 differentially expressed genes (two fold cutoff) even without the addition of androgens (i.e. in ethanol control), suggesting that a ligand independent activation or extremely low-level androgen activation of the AR. ChIP-Seq analysis revealed 6,629 AR binding regions in the cancer genome of PC3 cells with an FDR (false discovery rate) cut off of 0.05. About 22.4 % (638 o
Rebound Discharge in Deep Cerebellar Nuclear Neurons In Vitro
Neurons of the deep cerebellar nuclei (DCN) play a critical role in defining the output of cerebellum in the course of encoding Purkinje cell inhibitory inputs. The earliest work performed with in vitro preparations established that DCN cells have the capacity to translate membrane hyperpolarizations into a rebound increase in firing frequency. The primary means of distinguishing between DCN neurons has been according to cell size and transmitter phenotype, but in some cases, differences in the firing properties of DCN cells maintained in vitro have been reported. In particular, it was shown that large diameter cells in the rat DCN exhibit two phenotypes of rebound discharge in vitro that may eventually help define their functional roles in cerebellar output. A transient burst and weak burst phenotype can be distinguished based on the frequency and pattern of rebound discharge immediately following a hyperpolarizing stimulus. Work to date indicates that the difference in excitability arises from at least the degree of activation of T-type Ca2+ current during the immediate phase of rebound firing and Ca2+-dependent K+ channels that underlie afterhyperpolarizations. Both phenotypes can be detected following stimulation of Purkinje cell inhibitory inputs under conditions that preserve resting membrane potential and natural ionic gradients. In this paper, we review the evidence supporting the existence of different rebound phenotypes in DCN cells and the ion channel expression patterns that underlie their generation
Coronin-1A links cytoskeleton dynamics to TCRαβ-induced cell signaling
This work was supported by Inserm, CNRS, the ‘Association pour la Recherche sur le Cancer’ (ARC), the ‘Fondation Princesse Grace de Monaco’, and the Commission of the European Communities (to PF); and from the ‘Ministère de l'Education Nationale et de la Recherche’ (ACI #108) (to PF and AA). BN was supported by fellowships from the ‘Ligue Nationale Contre le Cancer’ and ARC. BM was supported by a fellowship from ARC.Actin polymerization plays a critical role in activated T lymphocytes both in regulating T cell receptor (TCR)-induced immunological synapse (IS) formation and signaling. Using gene targeting, we demonstrate that the hematopoietic specific, actin- and Arp2/3 complex-binding protein coronin-1A contributes to both processes. Coronin-1A-deficient mice specifically showed alterations in terminal development and the survival of αβT cells, together with defects in cell activation and cytokine production following TCR triggering. The mutant T cells further displayed excessive accumulation yet reduced dynamics of F-actin and the WASP-Arp2/3 machinery at the IS, correlating with extended cell-cell contact. Cell signaling was also affected with the basal activation of the stress kinases sAPK/JNK1/2; and deficits in TCR-induced Ca2+ influx and phosphorylation and degradation of the inhibitor of NF-κB (IκB). Coronin-1A therefore links cytoskeleton plasticity with the functioning of discrete TCR signaling components. This function may be required to adjust TCR responses to selecting ligands accounting in part for the homeostasis defect that impacts αβT cells in coronin-1A deficient mice, with the exclusion of other lympho/hematopoietic lineages. © 2008 Mugnier et al.© 2008 Mugnier et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Association between neighborhood safety and overweight status among urban adolescents
<p>Abstract</p> <p>Background</p> <p>Neighborhood safety may be an important social environmental determinant of overweight. We examined the relationship between perceived neighborhood safety and overweight status, and assessed the validity of reported neighborhood safety among a representative community sample of urban adolescents (who were racially and ethnically diverse).</p> <p>Methods</p> <p>Data come from the 2006 Boston Youth Survey, a cross-sectional study in which public high school students in Boston, MA completed a pencil-and-paper survey. The study used a two-stage, stratified sampling design whereby schools and then 9<sup>th</sup>–12<sup>th </sup>grade classrooms within schools were selected (the analytic sample included 1,140 students). Students reported their perceptions of neighborhood safety and several associated dimensions. With self-reported height and weight data, we computed body mass index (BMI, kg/m<sup>2</sup>) for the adolescents based on CDC growth charts. Chi-square statistics and corresponding <it>p</it>-values were computed to compare perceived neighborhood safety by the several associated dimensions. Prevalence ratios (PRs) and 95% confidence intervals (CI) were calculated to examine the association between perceived neighborhood safety and the prevalence of overweight status controlling for relevant covariates and school site.</p> <p>Results</p> <p>More than one-third (35.6%) of students said they always felt safe in their neighborhood, 43.9% said they sometimes felt safe, 11.6% rarely felt safe, and 8.9% never felt safe. Those students who reported that they rarely or never feel safe in their neighborhoods were more likely than those who said they always or sometimes feel safe to believe that gang violence was a serious problem in their neighborhood or school (68.0% vs. 44.1%, <it>p </it>< 0.001), and to have seen someone in their neighborhood assaulted with a weapon (other than a firearm) in the past 12 months (17.8% vs. 11.3%, <it>p </it>= 0.025). In the fully adjusted model (including grade and school) stratified by race/ethnicity, we found a statistically significant association between feeling unsafe in one's own neighborhood and overweight status among those in the Other race/ethnicity group [(PR = 1.56, (95% CI: 1.02, 2.40)].</p> <p>Conclusion</p> <p>Data suggest that perception of neighborhood safety may be associated with overweight status among urban adolescents in certain racial/ethnic groups. Policies and programs to address neighborhood safety may also be preventive for adolescent overweight.</p
Reply: Clinical Pharmacist Management of Bacteremia in a Community Hospital Emergency Department
- …
