1,226 research outputs found
General relativistic null-cone evolutions with a high-order scheme
We present a high-order scheme for solving the full non-linear Einstein
equations on characteristic null hypersurfaces using the framework established
by Bondi and Sachs. This formalism allows asymptotically flat spaces to be
represented on a finite, compactified grid, and is thus ideal for far-field
studies of gravitational radiation. We have designed an algorithm based on
4th-order radial integration and finite differencing, and a spectral
representation of angular components. The scheme can offer significantly more
accuracy with relatively low computational cost compared to previous methods as
a result of the higher-order discretization. Based on a newly implemented code,
we show that the new numerical scheme remains stable and is convergent at the
expected order of accuracy.Comment: 24 pages, 3 figure
Joule heating effects in nanoscale carbon-based memory devices
This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.One of the emerging candidates to bridge the gap between fast but volatile DRAM and non-volatile but slow storage devices is tetrahedral amorphous carbon (ta-C) based memory [1]-[3]. This offers a very good scalability, data retention and sub-5ns switching [2], [3]. Amorphous carbon memory devices can be electrically and optically switched from a high resistance state (HRS) to a low resistance state (LRS) [4]. The electrical conduction in the LRS is thought to be through sp2 clusters that form a conductive filament [4].This work was funded by the EU research & innovation project CareRAMM, no. 30998
The 492 GHz emission of Sgr A* constrained by ALMA
We report linearly polarized continuum emission properties of Sgr A* at 492 GHz, based on the Atacama Large Millimeter Array (ALMA) observations. We used the observations of the likely unpolarized continuum emission of Titan, and the observations of C\textsc{i} line emission, to gauge the degree of spurious polarization. The Stokes I flux of 3.60.72 Jy during our run is consistent with extrapolations from the previous, lower frequency observations. We found that the continuum emission of Sgr A* at 492 GHz shows large amplitude differences between the XX and the YY correlations. The observed intensity ratio between the XX and YY correlations as a function of parallactic angle may be explained by a constant polarization position angle of 1583. The fitted polarization percentage of Sgr A* during our observational period is 14\%1.2\%. The calibrator quasar J1744-3116 we observed at the same night can be fitted to Stokes I = 252 mJy, with 7.9\%0.9\% polarization in position angle P.A. = 4.14.2. The observed polarization percentage and polarization position angle in the present work appear consistent with those expected from longer wavelength observations in the period of 1999-2005. In particular, the polarization position angle at 492 GHz, expected from the previously fitted 1677 intrinsic polarization position angle and (-5.60.7)10 rotation measure, is 155, which is consistent with our new measurement of polarization position angle within 1. The polarization percentage and the polarization position angle may be varying over the period of our ALMA 12m Array observations, which demands further investigation with future polarization observations
A neural correlate of learning fails to predict foraging efficiency in the bumble bee Bombus terrestris
Mushroom bodies (MB) are integrative structures in the insect brain that, in social bees, contribute to both visual and olfactory learning. Changes in the density of presynaptic boutons (or microglomeruli) within the calyx region of the MB have been linked to various aspects of foraging, including forms of learning that are believed to be key in supporting foraging efficiency. Here, we directly tested the relationship between foraging efficiency and microglomerulus density in a bumble bee model, Bombus terrestris. We found no evidence for microglomerulus density predicting real-world foraging performance, nor any relationship with foraging experience. Instead, our data suggest a potential nonlinear relationship between an individual's age, which is independent of foraging experience, and microglomerulus density in the lip region of the calyx, which is associated with olfactory processing. Our findings suggest that in real-world scenarios there is no simple direct relationship between microglomerulus density, learning ability and foraging efficiency in bumble bees, highlighting the knowledge gap regarding the relationships between learning abilities, neuroanatomy and foraging efficiency
Nonspecific synaptic plasticity improves the recognition of sparse patterns degraded by local noise
Safaryan, K. et al. Nonspecific synaptic plasticity improves the recognition of sparse patterns degraded by local noise. Sci. Rep. 7, 46550; doi: 10.1038/srep46550 (2017). This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ © The Author(s) 2017.Many forms of synaptic plasticity require the local production of volatile or rapidly diffusing substances such as nitric oxide. The nonspecific plasticity these neuromodulators may induce at neighboring non-active synapses is thought to be detrimental for the specificity of memory storage. We show here that memory retrieval may benefit from this non-specific plasticity when the applied sparse binary input patterns are degraded by local noise. Simulations of a biophysically realistic model of a cerebellar Purkinje cell in a pattern recognition task show that, in the absence of noise, leakage of plasticity to adjacent synapses degrades the recognition of sparse static patterns. However, above a local noise level of 20 %, the model with nonspecific plasticity outperforms the standard, specific model. The gain in performance is greatest when the spatial distribution of noise in the input matches the range of diffusion-induced plasticity. Hence non-specific plasticity may offer a benefit in noisy environments or when the pressure to generalize is strong.Peer reviewe
Reconstruction and control of a time-dependent two-electron wave packet
The concerted motion of two or more bound electrons governs atomic1 and molecular2,3 non-equilibrium processes including chemical reactions, and hence there is much interest in developing a detailed understanding of such electron dynamics in the quantum regime. However, there is no exact solution for the quantumthree-body problem, and as a result even the minimal system of two active electrons and a nucleus is analytically intractable4. This makes experimental measurements of the dynamics of two bound and correlated electrons, as found in the helium atom, an attractive prospect.However, although the motion of single active electrons and holes has been observed with attosecond time resolution5-7, comparable experiments on two-electron motion have so far remained out of reach. Here we showthat a correlated two-electron wave packet can be reconstructed froma 1.2-femtosecondquantumbeatamong low-lying doubly excited states in helium.The beat appears in attosecond transient-absorption spectra5,7-9 measured with unprecedentedly high spectral resolution and in the presence of an intensity-tunable visible laser field.Wetune the coupling10-12 between the two low-lying quantum states by adjusting the visible laser intensity, and use the Fano resonance as a phase-sensitive quantum interferometer13 to achieve coherent control of the two correlated electrons. Given the excellent agreement with large-scalequantum-mechanical calculations for thehelium atom, we anticipate thatmultidimensional spectroscopy experiments of the type we report here will provide benchmark data for testing fundamental few-body quantumdynamics theory in more complex systems. Theymight also provide a route to the site-specificmeasurement and control of metastable electronic transition states that are at the heart of fundamental chemical reactionsWe thank E. Lindroth for calculating the dipole moment (2p2|r|sp2,3+), and also A. Voitkiv, Z.-H. Loh, and R. Moshammer for helpful discussions. We acknowledge financial support by the Max-Planck Research Group Program of the Max-Planck Gesellschaft (MPG) and the European COST Action CM1204 XLIC. L. A. and F. M. acknowledge computer time from the CCC-UAM and Mare Nostrum supercomputer centers and financial support by the European Research Council under the ERC Advanced Grant no. 290853 XCHEM, the Ministerio de Economía y Competitividad projects FIS2010-15127, FIS2013-42002-R and ERA-Chemistry PIM2010EEC-00751, and the European grant MC-ITN CORIN
Gravitational Waves from Gravitational Collapse
Gravitational wave emission from the gravitational collapse of massive stars
has been studied for more than three decades. Current state of the art
numerical investigations of collapse include those that use progenitors with
realistic angular momentum profiles, properly treat microphysics issues,
account for general relativity, and examine non--axisymmetric effects in three
dimensions. Such simulations predict that gravitational waves from various
phenomena associated with gravitational collapse could be detectable with
advanced ground--based and future space--based interferometric observatories.Comment: 68 pages including 13 figures; revised version accepted for
publication in Living Reviews in Relativity (http://www.livingreviews.org
Core collapse in massive scalar-tensor gravity
This paper provides an extended exploration of the inverse-chirp
gravitational-wave signals from stellar collapse in massive scalar-tensor
gravity reported in [Phys. Rev. Lett. {\bf 119}, 201103]. We systematically
explore the parameter space that characterizes the progenitor stars, the
equation of state and the scalar-tensor theory of the core collapse events. We
identify a remarkably simple and straightforward classification scheme of the
resulting collapse events. For any given set of parameters, the collapse leads
to one of three end states, a weakly scalarized neutron star, a strongly
scalarized neutron star or a black hole, possibly formed in multiple stages.
The latter two end states can lead to strong gravitational-wave signals that
may be detectable in present continuous-wave searches with ground-based
detectors. We identify a very sharp boundary in the parameter space that
separates events with strong gravitational-wave emission from those with
negligible radiation.STFC Consolidator Grant No. ST/P000673/1
GWverse COST Action Grant No. CA16104
H2020-ERC-MaGRaTh–646597
NSF-XSEDE Grant No. PHY-090003
DiRRAC through STFC capital Grants No. ST/P002307/1 and No. ST/R002452/1, and STFC operations Grant No. ST/R00689X/
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
- …
