759 research outputs found
PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy
The satellite-borne experiment PAMELA has been used to make a new measurement
of the cosmic-ray antiproton flux and the antiproton-to-proton flux ratio which
extends previously published measurements down to 60 MeV and up to 180 GeV in
kinetic energy. During 850 days of data acquisition approximately 1500
antiprotons were observed. The measurements are consistent with purely
secondary production of antiprotons in the galaxy. More precise secondary
production models are required for a complete interpretation of the results.Comment: 11 pages, 3 figures, 1 table. Accepted for publication in Physical
Review Letter
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Recommended from our members
When passive feels active - delusion-proneness alters self-recognition in the moving rubber hand illusion
Psychotic patients have problems with bodily self-recognition such as the experience of self-produced actions (sense of agency) and the perception of the body as their own (sense of ownership). While it has been shown that such impairments in psychotic patients can be explained by hypersalient processing of external sensory input it has also been suggested that they lack normal efference copy in voluntary action. However, it is not known how problems with motor predictions like efference copy contribute to impaired sense of agency and ownership in psychosis or psychosis-related states. We used a rubber hand illusion based on finger movements and measured sense of agency and ownership to compute a bodily self-recognition score in delusion-proneness (indexed by Peters’ Delusion Inventory - PDI). A group of healthy subjects (n=71) experienced active movements (involving motor predictions) or passive movements (lacking motor predictions). We observed a highly significant correlation between delusion-proneness and self-recognition in the passive conditions, while no such effect was observed in the active conditions. This was seen for both ownership and agency scores. The result suggests that delusion-proneness is associated with hypersalient external input in passive conditions, resulting in an abnormal experience of the illusion. We hypothesize that this effect is not present in the active condition because deficient motor predictions counteract hypersalience in psychosis proneness
Identifying Causal Risk Factors for Violence among Discharged Patients
This study was funded by the UK National
Institute for Health Research (NIHR) under its
Programme Grants for Applied Research funding
scheme (RP-PG-0407-10500)
Clostridium difficile infection among hospitalized HIV-infected individuals: epidemiology and risk factors: results from a case-control study (2002-2013).
BACKGROUND: HIV infection is a risk factor for Clostridium difficile infection (CDI) yet the immune deficiency predisposing to CDI is not well understood, despite an increasing incidence of CDI among such individuals. We aimed to estimate the incidence and to evaluate the risk factors of CDI among an HIV cohort in Italy. METHODS: We conducted a retrospective case-control (1:2) study. Clinical records of HIV inpatients admitted to the National Institute for Infectious Disease "L. Spallanzani", Rome, were reviewed (2002-2013). CASES: HIV inpatients with HO-HCFA CDI, and controls: HIV inpatients without CDI, were matched by gender and age. Logistic regression was used to identify risk factors associated with CDI. RESULTS: We found 79 CDI episodes (5.1 per 1000 HIV hospital admissions, 3.4 per 10000 HIV patient-days). The mean age of cases was 46 years. At univariate analysis factors associated with CDI included: antimycobacterial drug exposure, treatment for Pneumocystis pneumonia, acid suppressant exposure, previous hospitalization, antibiotic exposure, low CD4 cell count, high Charlson score, low creatinine, low albumin and low gammaglobulin level. Using multivariate analysis, lower gammaglobulin level and low serum albumin at admission were independently associated with CDI among HIV-infected patients. CONCLUSIONS: Low gammaglobulin and low albumin levels at admission are associated with an increased risk of developing CDI. A deficiency in humoral immunity appears to play a major role in the development of CDI. The potential protective role of albumin warrants further investigation
Mechanism of subunit interaction at ketosynthase-dehydratase junctions in trans-AT polyketide synthases
Modular polyketide synthases (PKSs) produce numerous structurally complex natural products with diverse applications in medicine and agriculture. They typically consist of several multienzyme subunits that utilize structurally-defined docking domains (DDs) at their N- and C-termini to ensure correct assembly into functional multi-protein complexes. Here we report a fundamentally different mechanism for subunit assembly in trans-AT modular PKSs at the junction between ketosynthase (KS) and dehydratase (DH) domains. This involves direct interaction of a largely unstructured docking domain (DD) at the C-terminus of the KS with the surface of the downstream DH. Acyl transfer assays and mechanism-based cross-linking established that the DD is required for the KS to communicate with the acyl carrier protein appended to the DH. Two distinct regions for binding of the DD to the DH were identified using NMR spectroscopy, carbene foot-printing and mutagenesis, providing a foundation for future elucidation of the molecular basis for interaction specificity
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication
Cultivated citrus are selections from, or hybrids of, wild progenitor species whose identities and contributions to citrus domestication remain controversial. Here we sequence and compare citrus genomes-a high-quality reference haploid clementine genome and mandarin, pummelo, sweet-orange and sour-orange genomes-and show that cultivated types derive from two progenitor species. Although cultivated pummelos represent selections from one progenitor species, Citrus maxima, cultivated mandarins are introgressions of C. maxima into the ancestral mandarin species Citrus reticulata. The most widely cultivated citrus, sweet orange, is the offspring of previously admixed individuals, but sour orange is an F1 hybrid of pure C. maxima and C. reticulata parents, thus implying that wild mandarins were part of the early breeding germplasm. A Chinese wild 'mandarin' diverges substantially from C. reticulata, thus suggesting the possibility of other unrecognized wild citrus species. Understanding citrus phylogeny through genome analysis clarifies taxonomic relationships and facilitates sequence-directed genetic improvement. (Résumé d'auteur
A stable genetic polymorphism underpinning microbial syntrophy
Syntrophies are metabolic cooperations, whereby two organisms co-metabolize a substrate in an interdependent manner. Many of the observed natural syntrophic interactions are mandatory in the absence of strong electron acceptors, such that one species in the syntrophy has to assume the role of electron sink for the other. While this presents an ecological setting for syntrophy to be beneficial, the potential genetic drivers of syntrophy remain unknown to date. Here, we show that the syntrophic sulfate-reducing species Desulfovibrio vulgaris displays a stable genetic polymorphism, where only a specific genotype is able to engage in syntrophy with the hydrogenotrophic methanogen Methanococcus maripaludis. This 'syntrophic' genotype is characterized by two genetic alterations, one of which is an in-frame deletion in the gene encoding for the ion-translocating subunit cooK of the membrane-bound COO hydrogenase. We show that this genotype presents a specific physiology, in which reshaping of energy conservation in the lactate oxidation pathway enables it to produce sufficient intermediate hydrogen for sustained M. maripaludis growth and thus, syntrophy. To our knowledge, these findings provide for the first time a genetic basis for syntrophy in nature and bring us closer to the rational engineering of syntrophy in synthetic microbial communities
Bumble bee parasite strains vary in resistance to phytochemicals
Nectar and pollen contain diverse phytochemicals that can reduce disease in pollinators. However, prior studies showed variable effects of nectar chemicals on infection, which could reflect variable phytochemical resistance among parasite strains. Inter-strain variation in resistance could influence evolutionary interactions between plants, pollinators, and pollinator disease, but testing direct effects of phytochemicals on parasites requires elimination of variation between bees. Using cell cultures of the bumble bee parasite Crithidia bombi, we determined (1) growth-inhibiting effects of nine floral phytochemicals and (2) variation in phytochemical resistance among four parasite strains.
C. bombi growth was unaffected by naturally occurring concentrations of the known antitrypanosomal phenolics gallic acid, caffeic acid, and chlorogenic acid. However, C. bombi growth was inhibited by anabasine, eugenol, and thymol. Strains varied >3-fold in phytochemical resistance, suggesting that selection for phytochemical resistance could drive parasite evolution. Inhibitory concentrations of thymol (4.53-22.2 ppm) were similar to concentrations in Thymus vulgaris nectar (mean 5.2 ppm). Exposure of C. bombi to naturally occurring levels of phytochemicals—either within bees or during parasite transmission via flowers—could influence infection in nature. Flowers that produce antiparasitic phytochemical, including thymol, could potentially reduce infection in Bombus populations, thereby counteracting a possible contributor to pollinator decline
- …
