2,050 research outputs found
Temperature effects on zoeal morphometric traits and intraspecific variability in the hairy crab Cancer setosus across latitude
International audiencePhenotypic plasticity is an important but often ignored ability that enables organisms, within species-specific physiological limits, to respond to gradual or sudden extrinsic changes in their environment. In the marine realm, the early ontogeny of decapod crustaceans is among the best known examples to demonstrate a temperature-dependent phenotypic response. Here, we present morphometric results of larvae of the hairy crab , the embryonic development of which took place at different temperatures at two different sites (Antofagasta, 23°45′ S; Puerto Montt, 41°44′ S) along the Chilean Coast. Zoea I larvae from Puerto Montt were significantly larger than those from Antofagasta, when considering embryonic development at the same temperature. Larvae from Puerto Montt reared at 12 and 16°C did not differ morphometrically, but sizes of larvae from Antofagasta kept at 16 and 20°C did, being larger at the colder temperature. Zoea II larvae reared in Antofagasta at three temperatures (16, 20, and 24°C) showed the same pattern, with larger larvae at colder temperatures. Furthermore, larvae reared at 24°C, showed deformations, suggesting that 24°C, which coincides with temperatures found during strong EL Niño events, is indicative of the upper larval thermal tolerance limit. is exposed to a wide temperature range across its distribution range of about 40° of latitude. Phenotypic plasticity in larval offspring does furthermore enable this species to locally respond to the inter-decadal warming induced by El Niño. Morphological plasticity in this species does support previously reported energetic trade-offs with temperature throughout early ontogeny of this species, indicating that plasticity may be a key to a species' success to occupy a wide distribution range and/or to thrive under highly variable habitat conditions
A personalized and context-aware news offer for mobile devices
For classical domains, such as movies, recommender systems have proven their usefulness. But recommending news is more challenging due to the short life span of news content and the demand for up-to-date recommendations. This paper presents a news recommendation service with a content-based algorithm that uses features of a search engine for content processing and indexing, and a collaborative filtering algorithm for serendipity. The extension towards a context-aware algorithm is made to assess the information value of context in a mobile environment through a user study. Analyzing interaction behavior and feedback of users on three recommendation approaches shows that interaction with the content is crucial input for user modeling. Context-aware recommendations using time and device type as context data outperform traditional recommendations with an accuracy gain dependent on the contextual situation. These findings demonstrate that the user experience of news services can be improved by a personalized context-aware news offer
Punica granatum (Pomegranate) juice provides an HIV-1 entry inhibitor and candidate topical microbicide
BACKGROUND: For ≈ 24 years the AIDS pandemic has claimed ≈ 30 million lives, causing ≈ 14,000 new HIV-1 infections daily worldwide in 2003. About 80% of infections occur by heterosexual transmission. In the absence of vaccines, topical microbicides, expected to block virus transmission, offer hope for controlling the pandemic. Antiretroviral chemotherapeutics have decreased AIDS mortality in industrialized countries, but only minimally in developing countries. To prevent an analogous dichotomy, microbicides should be: acceptable; accessible; affordable; and accelerative in transition from development to marketing. Already marketed pharmaceutical excipients or foods, with established safety records and adequate anti-HIV-1 activity, may provide this option. METHODS: Fruit juices were screened for inhibitory activity against HIV-1 IIIB using CD4 and CXCR4 as cell receptors. The best juice was tested for inhibition of: (1) infection by HIV-1 BaL, utilizing CCR5 as the cellular coreceptor; and (2) binding of gp120 IIIB and gp120 BaL, respectively, to CXCR4 and CCR5. To remove most colored juice components, the adsorption of the effective ingredient(s) to dispersible excipients and other foods was investigated. A selected complex was assayed for inhibition of infection by primary HIV-1 isolates. RESULTS: HIV-1 entry inhibitors from pomegranate juice adsorb onto corn starch. The resulting complex blocks virus binding to CD4 and CXCR4/CCR5 and inhibits infection by primary virus clades A to G and group O. CONCLUSION: These results suggest the possibility of producing an anti-HIV-1 microbicide from inexpensive, widely available sources, whose safety has been established throughout centuries, provided that its quality is adequately standardized and monitored
Increased ventral striatal volume in college-aged binge drinkers
BACKGROUND
Binge drinking is a serious public health issue associated with cognitive, physiological, and anatomical differences from healthy individuals. No studies, however, have reported subcortical grey matter differences in this population. To address this, we compared the grey matter volumes of college-age binge drinkers and healthy controls, focusing on the ventral striatum, hippocampus and amygdala.
METHOD
T1-weighted images of 19 binge drinkers and 19 healthy volunteers were analyzed using voxel-based morphometry. Structural data were also covaried with Alcohol Use Disorders Identification Test (AUDIT) scores. Cluster-extent threshold and small volume corrections were both used to analyze imaging data.
RESULTS
Binge drinkers had significantly larger ventral striatal grey matter volumes compared to controls. There were no between group differences in hippocampal or amygdalar volume. Ventral striatal, amygdalar, and hippocampal volumes were also negatively related to AUDIT scores across groups.
CONCLUSIONS
Our findings stand in contrast to the lower ventral striatal volume previously observed in more severe forms of alcohol use disorders, suggesting that college-age binge drinkers may represent a distinct population from those groups. These findings may instead represent early sequelae, compensatory effects of repeated binge and withdrawal, or an endophenotypic risk factor
Accretion of Planetary Material onto Host Stars
Accretion of planetary material onto host stars may occur throughout a star's
life. Especially prone to accretion, extrasolar planets in short-period orbits,
while relatively rare, constitute a significant fraction of the known
population, and these planets are subject to dynamical and atmospheric
influences that can drive significant mass loss. Theoretical models frame
expectations regarding the rates and extent of this planetary accretion. For
instance, tidal interactions between planets and stars may drive complete
orbital decay during the main sequence. Many planets that survive their stars'
main sequence lifetime will still be engulfed when the host stars become red
giant stars. There is some observational evidence supporting these predictions,
such as a dearth of close-in planets around fast stellar rotators, which is
consistent with tidal spin-up and planet accretion. There remains no clear
chemical evidence for pollution of the atmospheres of main sequence or red
giant stars by planetary materials, but a wealth of evidence points to active
accretion by white dwarfs. In this article, we review the current understanding
of accretion of planetary material, from the pre- to the post-main sequence and
beyond. The review begins with the astrophysical framework for that process and
then considers accretion during various phases of a host star's life, during
which the details of accretion vary, and the observational evidence for
accretion during these phases.Comment: 18 pages, 5 figures (with some redacted), invited revie
Redox-freezing and nucleation of diamond via magnetite formation in the Earth’s mantle
Diamonds and their inclusions are unique probes into the deep Earth, tracking the deep carbon cycle to >800 km. Understanding the mechanisms of carbon mobilization and freezing is a prerequisite for quantifying the fluxes of carbon in the deep Earth. Here we show direct evidence for the formation of diamond by redox reactions involving FeNi sulfides. Transmission Kikuchi Diffraction identifies an arrested redox reaction from pyrrhotite to magnetite included in diamond. The magnetite corona shows coherent epitaxy with relict pyrrhotite and diamond, indicating that diamond nucleated on magnetite. Furthermore, structures inherited from h-Fe3O4 define a phase transformation at depths of 320–330 km, the base of the Kaapvaal lithosphere. The oxidation of pyrrhotite to magnetite is an important trigger of diamond precipitation in the upper mantle, explaining the presence of these phases in diamonds
Parental transfer of the antimicrobial protein LBP/BPI protects Biomphalaria glabrata eggs against oomycete infections
Copyright: © 2013 Baron et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was funded by ANR (ANR-07-BLAN-0214 and ANR-12-EMMA-00O7-01), CNRS and INRA. PvW was financially supported by the BBSRC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
Profiling of the perturbed metabolomic state of mouse spleen during acute and chronic toxoplasmosis
Background
Toxoplasma gondii, a common opportunistic protozoan, is a leading cause of illness and mortality among immunosuppressed individuals and during congenital infections. Current therapeutic strategies for toxoplasmosis are not fully effective at curtailing disease progression in these cases. Given the parasite ability to influence host immunity and metabolism, understanding of the metabolic alterations in the host’s immune organs during T. gondii infection may enhance the understanding of the molecular mechanisms that define the pathophysiology of T. gondii infection.
Methods
We investigated the global metabolic changes in the spleen of BALB/c mice at early and late stage of infection with T. gondii using LC-MS/MS-based metabolomics. Multivariate data analysis methods, principal components analysis (PCA) and partial least squares discriminant analysis (PLS-DA), were used to identify metabolites that are influenced by T. gondii infection.
Results
Multivariate analyses clearly separated the metabolites of spleen of infected and control mice. A total of 132 differential metabolites were identified, 23 metabolites from acutely infected versus control mice and 109 metabolites from chronically infected versus control mice. Lipids, hormones, lactones, acids, peptides, antibiotics, alkaloids and natural toxins were the most influenced chemical groups. There were 12 shared differential metabolites between acutely infected versus control mice and chronically infected versus control mice, of which 4,4-Dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol was significantly upregulated and ubiquinone-8 was significantly downregulated. Major perturbed metabolic pathways included primary bile acid biosynthesis, steroid hormone biosynthesis, biotin metabolism, and steroid biosynthesis, with arachidonic acid metabolism being the most significantly impacted pathway. These metabolic changes suggest a multifactorial nature of the immunometabolic responses of mouse spleen to T. gondii infection.
Conclusions
This study demonstrated that T. gondii infection can cause significant metabolomic alterations in the spleen of infected mice. These findings provide new insights into the molecular mechanisms that underpin the pathogenesis of T. gondii infection
Molecular recognition and scavenging of arsenate from aqueous solution using dimetallic receptors
A series of copper(II), nickel(II) and zinc(II) dimetallic complexes were prepared and their affinities towards arsenate investigated. Indicator displacement assays (IDAs) were carried out to establish the complexes with best affinities towards arsenate. A di‐zinc complex (3 ) was selected and its arsenate‐binding abilities investigated by isothermal titration calorimetry (ITC). The X‐ray crystal structure of this metallo‐receptor bound to arsenate is also reported, which allowed us to establish the binding mode between 3 and this oxyanion. Immobilising 3 onto HypoGel resin yielded a novel adsorbent (Zn–HypoGel) with high affinity for arsenate. Adsorption of arsenate from competitive solutions and natural groundwater was greater than that of the commercially used iron oxide Bayoxide E33. Zn–HypoGel could be efficiently and simply regenerated by washing with sodium acetate solution
Top-Down Feedback in an HMAX-Like Cortical Model of Object Perception Based on Hierarchical Bayesian Networks and Belief Propagation
PubMed ID: 2313976
- …
