26 research outputs found
Primordial Black Holes as All Dark Matter
We argue that a primordial black hole is a natural and unique candidate for
all dark matter. We show that, in a smooth-hybrid new double inflation model, a
right amount of the primordial black holes, with a sharply-defined mass, can be
produced at the end of the smooth-hybrid regime, through preheating. We first
consider masses < 10^(-7)M_sun which are allowed by all the previous
constraints. We next discuss much heavier mass 10^5 M_sun hinted at by entropy,
and galactic size evolution, arguments. Effects on the running of the scalar
spectral index are computed.Comment: 14 pages, 2 figures, a version to appear in JCAP
Effects of Residue Background Events in Direct Dark Matter Detection Experiments on the Determination of the WIMP Mass
In the earlier work on the development of a model-independent data analysis
method for determining the mass of Weakly Interacting Massive Particles (WIMPs)
by using measured recoil energies from direct Dark Matter detection experiments
directly, it was assumed that the analyzed data sets are background-free, i.e.,
all events are WIMP signals. In this article, as a more realistic study, we
take into account a fraction of possible residue background events, which pass
all discrimination criteria and then mix with other real WIMP-induced events in
our data sets. Our simulations show that, for the determination of the WIMP
mass, the maximal acceptable fraction of residue background events in the
analyzed data sets of O(50) total events is ~20%, for background windows of the
entire experimental possible energy ranges, or in low energy ranges; while, for
background windows in relatively higher energy ranges, this maximal acceptable
fraction of residue background events can not be larger than ~10%. For a WIMP
mass of 100 GeV with 20% background events in the windows of the entire
experimental possible energy ranges, the reconstructed WIMP mass and the
1-sigma statistical uncertainty are ~97 GeV^{+61%}_{-35%} (~94
GeV^{+55%}_{-33%} for background-free data sets).Comment: 27 pages, 22 eps figures; v2: revised version for publication,
references added and update
Annihilation of NMSSM neutralinos in the Sun and neutrino telescope limits
We investigate neutralino dark matter in the framework of NMSSM performing a
scan over its parameter space and calculating neutralino capture and
annihilation rates in the Sun. We discuss the prospects of searches for
neutralino dark matter in neutrino experiments depending on neutralino content
and its main annihilation channel. We recalculate the upper limits on
neutralino-proton elastic cross sections directly from neutrino telescopes
upper bounds on annihilation rates in the Sun. This procedure has advantages as
compared with corresponding recalcalations from the limits on muon flux,
namely, it is independent on details of the experiment and the recalculation
coefficients are universal for any kind of WIMP dark matter models. We derive
90% c.l. upper limits on neutralino-proton cross sections from the results of
the Baksan Underground Scintillator Telescope.Comment: 28 pages, 16 figures, accepted for publication in JCAP, references
adde
Small steps towards Grand Unification and the electron/positron excesses in cosmic-ray experiments
We consider a small extension of the standard model by adding two Majorana
fermions; those are adjoint representations of the SU(2)_L and SU(3)_c gauge
groups of the standard model. In this extension, the gauge coupling unification
at an energy scale higher than 10^{15} GeV is realized when the masses of the
triplet and the octet fermions are smaller than 10^4 GeV and 10^{12} GeV,
respectively. We also show that an appropriate symmetry ensures a long lifetime
of the neutral component of the triplet fermion whose thermal relic density
naturally explains the observed dark matter density. The electron/positron
excesses observed in recent cosmic-ray experiments can be also explained by the
decay of the triplet fermion.Comment: 11 pages, 5 figure
Scalar Bilepton Dark Matter
In this work we show that 3-3-1 model with right-handed neutrinos has a
natural weakly interacting massive particle (WIMP) dark mater candidate. It is
a complex scalar with mass of order of some hundreds of GeV which carries two
units of lepton number, a scalar bilepton. This makes it a very peculiar WIMP,
very distinct from Supersymmetric or Extra-dimension candidates. Besides,
although we have to make some reasonable assumptions concerning the several
parameters in the model, no fine tunning is required in order to get the
correct dark matter abundance. We also analyze the prospects for WIMP direct
detection by considering recent and projected sensitivities for WIMP-nucleon
elastic cross section from CDMS and XENON Collaborations.Comment: 21 pages, 8 figures, uses iopart.cls, same text as published version
with a small different arrangement of figure
Prospects For Identifying Dark Matter With CoGeNT
It has previously been shown that the excess of events reported by the CoGeNT
collaboration could be generated by elastically scattering dark matter
particles with a mass of approximately 5-15 GeV. This mass range is very
similar to that required to generate the annual modulation observed by
DAMA/LIBRA and the gamma rays from the region surrounding the Galactic Center
identified within the data of the Fermi Gamma Ray Space Telescope. To
confidently conclude that CoGeNT's excess is the result of dark matter,
however, further data will likely be needed. In this paper, we make projections
for the first full year of CoGeNT data, and for its planned upgrade. Not only
will this body of data more accurately constrain the spectrum of nuclear recoil
events, and corresponding dark matter parameter space, but will also make it
possible to identify seasonal variations in the rate. In particular, if the
CoGeNT excess is the product of dark matter, then one year of CoGeNT data will
likely reveal an annual modulation with a significance of 2-3. The
planned CoGeNT upgrade will not only detect such an annual modulation with high
significance, but will be capable of measuring the energy spectrum of the
modulation amplitude. These measurements will be essential to irrefutably
confirming a dark matter origin of these events.Comment: 6 pages, 6 figure
CoGeNT Interpretations
Recently, the CoGeNT experiment has reported events in excess of expected
background. We analyze dark matter scenarios which can potentially explain this
signal. Under the standard case of spin independent scattering with equal
couplings to protons and neutrons, we find significant tensions with existing
constraints. Consistency with these limits is possible if a large fraction of
the putative signal events is coming from an additional source of experimental
background. In this case, dark matter recoils cannot be said to explain the
excess, but are consistent with it. We also investigate modifications to dark
matter scattering that can evade the null experiments. In particular, we
explore generalized spin independent couplings to protons and neutrons, spin
dependent couplings, momentum dependent scattering, and inelastic interactions.
We find that some of these generalizations can explain most of the CoGeNT
events without violation of other constraints. Generalized couplings with some
momentum dependence, allows further consistency with the DAMA modulation
signal, realizing a scenario where both CoGeNT and DAMA signals are coming from
dark matter. A model with dark matter interacting and annihilating into a new
light boson can realize most of the scenarios considered.Comment: 24 pages, 12 figs, v2: published version, some discussions clarifie
Positronium Portal into Hidden Sector: A new Experiment to Search for Mirror Dark Matter
The understanding of the origin of dark matter has great importance for
cosmology and particle physics. Several interesting extensions of the standard
model dealing with solution of this problem motivate the concept of hidden
sectors consisting of SU(3)xSU(2)_LxU(1)_Y singlet fields. Among these models,
the mirror matter model is certainly one of the most interesting. The model
explains the origin of parity violation in weak interactions, it could also
explain the baryon asymmetry of the Universe and provide a natural ground for
the explanation of dark matter. The mirror matter could have a portal to our
world through photon-mirror photon mixing (epsilon). This mixing would lead to
orthopositronium (o-Ps) to mirror orthopositronium oscillations, the
experimental signature of which is the apparently invisible decay of o-Ps. In
this paper, we describe an experiment to search for the decay o-Ps -> invisible
in vacuum by using a pulsed slow positron beam and a massive 4pi BGO crystal
calorimeter. The developed high efficiency positron tagging system, the low
calorimeter energy threshold and high hermiticity allow the expected
sensitivity in mixing strength to be epsilon about 10^-9, which is more than
one order of magnitude below the current Big Bang Nucleosynthesis limit and in
a region of parameter space of great theoretical and phenomenological interest.
The vacuum experiment with such sensitivity is particularly timely in light of
the recent DAMA/LIBRA observations of the annual modulation signal consistent
with a mirror type dark matter interpretation.Comment: 40 pages, 29 Figures 2 Tables v2: Ref. added, Fig. 29 and some text
added to explain idea for backscattering e+ background suppression, corrected
typos v3: minor corrections: Eq 2.1 corrected (6 lines-> 5 lines), Eq.2.17:
two extra "-" signs remove
Mixed Bino-Wino-Higgsino Dark Matter in Gauge Messenger Models
Almost degenerate bino and wino masses at the weak scale is one of unique
features of gauge messenger models. The lightest neutralino is a mixture of
bino, wino and higgsino and can produce the correct amount of the dark matter
density if it is the lightest supersymmetric particle. Furthermore, as a result
of squeezed spectrum of superpartners which is typical for gauge messenger
models, various co-annihilation and resonance regions overlap and very often
the correct amount of the neutralino relic density is generated as an interplay
of several processes. This feature makes the explanation of the observed amount
of the dark matter density much less sensitive to fundamental parameters. We
calculate the neutralino relic density assuming thermal history and present
both spin independent and spin dependent cross sections for the direct
detection. We also discuss phenomenological constraints from b to s gamma and
muon g-2 and compare results of gauge messenger models to well known results of
the mSUGRA scenario.Comment: 27 pages, 9 figures, references added, version to appear at JCA
Low energy antideuterons: shedding light on dark matter
Low energy antideuterons suffer a very low secondary and tertiary
astrophysical background, while they can be abundantly synthesized in dark
matter pair annihilations, therefore providing a privileged indirect dark
matter detection technique. The recent publication of the first upper limit on
the low energy antideuteron flux by the BESS collaboration, a new evaluation of
the standard astrophysical background, and remarkable progresses in the
development of a dedicated experiment, GAPS, motivate a new and accurate
analysis of the antideuteron flux expected in particle dark matter models. To
this extent, we consider here supersymmetric, universal extra-dimensions (UED)
Kaluza-Klein and warped extra-dimensional dark matter models, and assess both
the prospects for antideuteron detection as well as the various related sources
of uncertainties. The GAPS experiment, even in a preliminary balloon-borne
setup, will explore many supersymmetric configurations, and, eventually, in its
final space-borne configuration, will be sensitive to primary antideuterons
over the whole cosmologically allowed UED parameter space, providing a search
technique which is highly complementary with other direct and indirect dark
matter detection experiments.Comment: 26 pages, 7 figures; version to appear in JCA
