9 research outputs found

    Unsteady mixed convection flow in stagnation region adjacent to a vertical surface

    No full text
    The unsteady two-dimensional laminar mixed convection flow in the stagnation region of a vertical surface has been studied where the buoyancy forces are due to both the temperature and concentration gradients. The unsteadiness in the flow and temperature fields is caused by the time-dependent free stream velocity. Both arbitrary wall temperature and concentration, and arbitrary surface heat and mass flux variations have been considered. The Navier-Stokes equations, the energy equation and the concentration equation, which are coupled nonlinear partial differential equations with three independent variables, have been reduced to a set of nonlinear ordinary differential equations. The analysis has also been done using boundary layer approximations and the difference between the solutions has been discussed. The governing ordinary differential equations for buoyancy assisting and buoyancy opposing regions have been solved numerically using a shooting method. The skin friction, heat transfer and mass transfer coefficients increase with the buoyancy parameter. However, the skin friction coefficient increases with the parameter lambda, which represents the unsteadiness in the free stream velocity, but the heat and mass transfer coefficients decrease. In the case of buoyancy opposed flow, the solution does not exist beyond a certain critical value of the buoyancy parameter. Also, for a certain range of the buoyancy parameter dual solutions exist

    Flow And Heat-Transfer Over An Upstream Moving Wall With A Magnetic-Field And A Parallel Free Stream

    No full text
    The flow and heat transfer over an upstream moving non-isothermal wall with a parallel free stream have been considered. The magnetic field has been applied in the free stream parallel to the wall and the effect of induced magnetic field has been included in the analysis. The boundary layer equations governing the steady incompressible electrically conducting fluid flow have been solved numerically using a shooting method. This problem is interesting because a solution exists only when the ratio of the wall velocity does not exceed a certain critical value and this critical value depends on the magnetic field and magnetic Prandtl number. Also dual solutions exist for a certain range of wall velocity

    Nanoparticles for pest control: current status and future perspectives

    No full text

    Chlorpyrifos: pollution and remediation

    No full text
    corecore