1,452 research outputs found

    Massive rearrangements of cellular MicroRNA signatures are key drivers of hepatocyte dedifferentiation

    Get PDF
    Hepatocytes are dynamic cells that, upon injury, can alternate between nondividing differentiated and dedifferentiated proliferating states in vivo . However, in two‐dimensional cultures, primary human hepatocytes (PHHs) rapidly dedifferentiate, resulting in loss of hepatic functions that significantly limits their usefulness as an in vitro model of liver biology, liver diseases, as well as drug metabolism and toxicity. Thus, understanding the underlying mechanisms and stalling of the dedifferentiation process would be highly beneficial to establish more‐accurate and relevant long‐term in vitro hepatocyte models. Here, we present comprehensive analyses of whole proteome and transcriptome dynamics during the initiation of dedifferentiation during the first 24 hours of culture. We report that early major rearrangements of the noncoding transcriptome, hallmarked by increased expression of small nucleolar RNAs, long noncoding RNAs, microRNAs (miRNAs), and ribosomal genes, precede most changes in coding genes during dedifferentiation of PHHs, and we speculated that these modulations could drive the hepatic dedifferentiation process. To functionally test this hypothesis, we globally inhibited the miRNA machinery using two established chemically distinct compounds, acriflavine and poly‐l ‐lysine. These inhibition experiments resulted in a significantly impaired miRNA response and, most important, in a pronounced reduction in the down‐regulation of hepatic genes with importance for liver function. Thus, we provide strong evidence for the importance of noncoding RNAs, in particular, miRNAs, in hepatic dedifferentiation, which can aid the development of more‐efficient differentiation protocols for stem‐cell‐derived hepatocytes and broaden our understanding of the dynamic properties of hepatocytes with respect to liver regeneration. Conclusion: miRNAs are important drivers of hepatic dedifferentiation, and our results provide valuable information regarding the mechanisms behind liver regeneration and possibilities to inhibit dedifferentiation in vitro

    The Mechanisms of Codon Reassignments in Mitochondrial Genetic Codes

    Get PDF
    Many cases of non-standard genetic codes are known in mitochondrial genomes. We carry out analysis of phylogeny and codon usage of organisms for which the complete mitochondrial genome is available, and we determine the most likely mechanism for codon reassignment in each case. Reassignment events can be classified according to the gain-loss framework. The gain represents the appearance of a new tRNA for the reassigned codon or the change of an existing tRNA such that it gains the ability to pair with the codon. The loss represents the deletion of a tRNA or the change in a tRNA so that it no longer translates the codon. One possible mechanism is Codon Disappearance, where the codon disappears from the genome prior to the gain and loss events. In the alternative mechanisms the codon does not disappear. In the Unassigned Codon mechanism, the loss occurs first, whereas in the Ambiguous Intermediate mechanism, the gain occurs first. Codon usage analysis gives clear evidence of cases where the codon disappeared at the point of the reassignment and also cases where it did not disappear. Codon disappearance is the probable explanation for stop to sense reassignments and a small number of reassignments of sense codons. However, the majority of sense to sense reassignments cannot be explained by codon disappearance. In the latter cases, by analysis of the presence or absence of tRNAs in the genome and of the changes in tRNA sequences, it is sometimes possible to distinguish between the Unassigned Codon and Ambiguous Intermediate mechanisms. We emphasize that not all reassignments follow the same scenario and that it is necessary to consider the details of each case carefully.Comment: 53 pages (45 pages, including 4 figures + 8 pages of supplementary information). To appear in J.Mol.Evo

    Business experience and start-up size: buying more lottery tickets next time around?

    Get PDF
    This paper explores the determinants of start-up size by focusing on a cohort of 6247 businesses that started trading in 2004, using a unique dataset on customer records at Barclays Bank. Quantile regressions show that prior business experience is significantly related with start-up size, as are a number of other variables such as age, education and bank account activity. Quantile treatment effects (QTE) estimates show similar results, with the effect of business experience on (log) start-up size being roughly constant across the quantiles. Prior personal business experience leads to an increase in expected start-up size of about 50%. Instrumental variable QTE estimates are even higher, although there are concerns about the validity of the instrument

    A Potent Tartrate Resistant Acid Phosphatase Inhibitor to Study the Function of TRAP in Alveolar Macrophages.

    Get PDF
    The enzyme tartrate resistant acid phosphatase (TRAP, two isoforms 5a and 5b) is highly expressed in alveolar macrophages, but its function there is unclear and potent selective inhibitors of TRAP are required to assess functional aspects of the protein. We found higher TRAP activity/expression in lungs of patients with chronic obstructive pulmonary disease (COPD) and asthma compared to controls and more TRAP activity in lungs of mice with experimental COPD or asthma. Stimuli related to asthma and/or COPD were tested for their capacity to induce TRAP. Receptor activator of NF-κb ligand (RANKL) and Xanthine/Xanthine Oxidase induced TRAP mRNA expression in mouse macrophages, but only RANKL also induced TRAP activity in mouse lung slices. Several Au(III) coordination compounds were tested for their ability to inhibit TRAP activity and [Au(4,4'-dimethoxy-2,2'-bipyridine)Cl2][PF6] (AubipyOMe) was found to be the most potent inhibitor of TRAP5a and 5b activity reported to date (IC50 1.3 and 1.8 μM respectively). AubipyOMe also inhibited TRAP activity in murine macrophage and human lung tissue extracts. In a functional assay with physiological TRAP substrate osteopontin, AubipyOMe inhibited mouse macrophage migration over osteopontin-coated membranes. In conclusion, higher TRAP expression/activity are associated with COPD and asthma and TRAP is involved in regulating macrophage migration

    Overview on the phenomenon of two-qubit entanglement revivals in classical environments

    Full text link
    The occurrence of revivals of quantum entanglement between separated open quantum systems has been shown not only for dissipative non-Markovian quantum environments but also for classical environments in absence of back-action. While the phenomenon is well understood in the first case, the possibility to retrieve entanglement when the composite quantum system is subject to local classical noise has generated a debate regarding its interpretation. This dynamical property of open quantum systems assumes an important role in quantum information theory from both fundamental and practical perspectives. Hybrid quantum-classical systems are in fact promising candidates to investigate the interplay among quantum and classical features and to look for possible control strategies of a quantum system by means of a classical device. Here we present an overview on this topic, reporting the most recent theoretical and experimental results about the revivals of entanglement between two qubits locally interacting with classical environments. We also review and discuss the interpretations provided so far to explain this phenomenon, suggesting that they can be cast under a unified viewpoint.Comment: 16 pages, 9 figures. Chapter written for the upcoming book "Lectures on general quantum correlations and their applications

    Assessing Fish and Motile Fauna around Offshore Windfarms Using Stereo Baited Video

    Get PDF
    There remains limited knowledge of how offshore windfarm developments influence fish assemblages, particularly at a local scale around the turbine structures. Considering the existing levels of anthropogenic pressures on coastal fish populations it is becoming increasingly important for developers and environmental regulators to gain a more comprehensive understanding of the factors influencing fish assemblages. Improving our ability to assess such fish populations in close proximity to structures will assist in increasing this knowledge. In the present study we provide the first trial use of Baited Remote Underwater Stereo-Video systems (stereo BRUVs) for the quantification of motile fauna in close proximity to offshore wind turbines. The study was conducted in the Irish Sea and finds the technique to be a viable means of assessing the motile fauna of such environments. The present study found a mixture of species including bottom dwellers, motile crustaceans and large predatory fish. The majority of taxa observed were found to be immature individuals with few adult individuals recorded. The most abundant species were the angular crab (Goneplax rhomboides) and the small-spotted catshark (Scyliorhinus canicula). Of note in this study was the generally low abundance and diversity of taxa recorded across all samples, we hypothesise that this reflects the generally poor state of the local fauna of the Irish Sea. The faunal assemblages sampled in close proximity to turbines were observed to alter with increasing distance from the structure, species more characteristic of hard bottom environments were in abundance at the turbines (e.g. Homarus gammarus, Cancer pagarus, Scyliorhinus spp.) and those further away more characteristic of soft bottoms (e.g. Norwegian Lobster). This study highlights the need for the environmental impacts of offshore renewables on motile fauna to be assessed using targeted and appropriate tools. Stereo BRUVs provide one of those tools, but like the majority of methods for sampling marine biota, they have limitations. We conclude our paper by providing a discussion of the benefits and limitations of using this BRUV technique for assessing fauna within areas close to offshore windfarms

    Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO2

    Get PDF
    Ocean acidification (OA) has important implications for the persistence of coral reef ecosystems, due to potentially negative effects on biomineralization. Many coral reefs are dynamic with respect to carbonate chemistry, and experience fluctuations in pCO2 that exceed OA projections for the near future. To understand the influence of dynamic pCO2 on an important reef calcifier, we tested the response of the crustose coralline alga Porolithon onkodes to oscillating pCO2. Individuals were exposed to ambient (400 ??atm), high (660 ??atm), or variable pCO2 (oscillating between 400/660 ??atm) treatments for 14 days. To explore the potential for coralline acclimatization, we collected individuals from low and high pCO2 variability sites (upstream and downstream respectively) on a back reef characterized by unidirectional water flow in Moorea, French Polynesia. We quantified the effects of treatment on algal calcification by measuring the change in buoyant weight, and on algal metabolism by conducting sealed incubations to measure rates of photosynthesis and respiration. Net photosynthesis was higher in the ambient treatment than the variable treatment, regardless of habitat origin, and there was no effect on respiration or gross photosynthesis. Exposure to high pCO2 decreased P. onkodes calcification by >70%, regardless of the original habitat. In the variable treatment, corallines from the high variability habitat calcified 42% more than corallines from the low variability habitat. The significance of the original habitat for the coralline calcification response to variable, high pCO2 indicates that individuals existing in dynamic pCO2 habitats may be acclimatized to OA within the scope of in situ variability. These results highlight the importance of accounting for natural pCO2 variability in OA manipulations, and provide insight into the potential for plasticity in habitat and species-specific responses to changing ocean chemistry.Funding was provided by grants from the National Science Foundation (OCE-0417412, OCE-10-26852, OCE-1041270) and gifts from the Gordon and Betty Moore Foundation. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Febrile seizures and mechanisms of epileptogenesis: insights from an animal model.

    Get PDF
    Temporal lobe epilepsy (TLE) is the most prevalent type of human epilepsy, yet the causes for its development, and the processes involved, are not known. Most individuals with TLE do not have a family history, suggesting that this limbic epilepsy is a consequence of acquired rather than genetic causes. Among suspected etiologies, febrile seizures have frequently been cited. This is due to the fact that retrospective analyses of adults with TLE have demonstrated a high prevalence (20-->60%) of a history of prolonged febrile seizures during early childhood, suggesting an etiological role for these seizures in the development of TLE. Specifically, neuronal damage induced by febrile seizures has been suggested as a mechanism for the development of mesial temporal sclerosis, the pathological hallmark of TLE. However, the statistical correlation between febrile seizures and TLE does not necessarily indicate a causal relationship. For example, preexisting (genetic or acquired) 'causes' that result independently in febrile seizures and in TLE would also result in tight statistical correlation. For obvious reasons, complex febrile seizures cannot be induced in the human, and studies of their mechanisms and of their consequences on brain molecules and circuits are severely limited. Therefore, an animal model was designed to study these seizures. The model reproduces the fundamental key elements of the human condition: the age specificity, the physiological temperatures seen in fevers of children, the length of the seizures and their lack of immediate morbidity. Neuroanatomical, molecular and functional methods have been used in this model to determine the consequences of prolonged febrile seizures on the survival and integrity of neurons, and on hyperexcitability in the hippocampal-limbic network. Experimental prolonged febrile seizures did not lead to death of any of the seizure-vulnerable populations in hippocampus, and the rate of neurogenesis was also unchanged. Neuronal function was altered sufficiently to promote synaptic reorganization of granule cells, and transient and long-term alterations in the expression of specific genes were observed. The contribution of these consequences of febrile seizures to the epileptogenic process is discussed

    Integrating Diverse Datasets Improves Developmental Enhancer Prediction

    Get PDF
    Gene-regulatory enhancers have been identified using various approaches, including evolutionary conservation, regulatory protein binding, chromatin modifications, and DNA sequence motifs. To integrate these different approaches, we developed EnhancerFinder, a two-step method for distinguishing developmental enhancers from the genomic background and then predicting their tissue specificity. EnhancerFinder uses a multiple kernel learning approach to integrate DNA sequence motifs, evolutionary patterns, and diverse functional genomics datasets from a variety of cell types. In contrast with prediction approaches that define enhancers based on histone marks or p300 sites from a single cell line, we trained EnhancerFinder on hundreds of experimentally verified human developmental enhancers from the VISTA Enhancer Browser. We comprehensively evaluated EnhancerFinder using cross validation and found that our integrative method improves the identification of enhancers over approaches that consider a single type of data, such as sequence motifs, evolutionary conservation, or the binding of enhancer-associated proteins. We find that VISTA enhancers active in embryonic heart are easier to identify than enhancers active in several other embryonic tissues, likely due to their uniquely high GC content. We applied EnhancerFinder to the entire human genome and predicted 84,301 developmental enhancers and their tissue specificity. These predictions provide specific functional annotations for large amounts of human non-coding DNA, and are significantly enriched near genes with annotated roles in their predicted tissues and lead SNPs from genome-wide association studies. We demonstrate the utility of EnhancerFinder predictions through in vivo validation of novel embryonic gene regulatory enhancers from three developmental transcription factor loci. Our genome-wide developmental enhancer predictions are freely available as a UCSC Genome Browser track, which we hope will enable researchers to further investigate questions in developmental biology. © 2014 Erwin et al
    corecore