12 research outputs found
Sitagliptin reduces plaque macrophage content and stabilises arteriosclerotic lesions in Apoe −/− mice
In vitro fabrication of autologous living tissue-engineered vascular grafts based on prenatally harvested ovine amniotic fluid-derived stem cells
Amniotic fluid cells (AFCs) have been proposed as a valuable source for tissue engineering and regenerative medicine. However, before clinical implementation, rigorous evaluation of this cell source in clinically relevant animal models accepted by regulatory authorities is indispensable. Today, the ovine model represents one of the most accepted preclinical animal models, in particular for cardiovascular applications. Here, we investigate the isolation and use of autologous ovine AFCs as cell source for cardiovascular tissue engineering appli cations. Fetal fluids were aspirated in vivo
from pregnant ewes (n = 9) and from explanted uteri post mortem at different gestational ages (n = 91). Amniotic non-allantoic fluid nature was evaluated biochemically and in vivo samples were compared with post mortem reference samples. Isolated cells revealed an immunohistochemical phenotype similar to ovine bone marrow-der ived mesenchymal stem cells (MSCs) and showed expression of stem cell factors described for embryonic stem cells, such as NANOG and STAT-3.
Isolated ovine amniotic fluid-derived MSCs were screened for numeric chromosomal aberrations and successfully differentiated into several mesodermal phenotypes. Myofibroblastic ovine AFC lineages were then successfully used for the in vitro fabrication of small- and large-diameter tissue-engineered vascular grafts (n = 10) and cardiovascular patches (n = 34), laying the foundation for the use of this relevant pre-clinical in vivo assessment model for future amniotic fluid cell-based therapeutic applications. Copyright © 2013 John Wiley & Sons, Ltd
Re-directed T cells for the treatment of fibroblast activation protein (FAP)-positive malignant pleural mesothelioma (FAPME-1)
ABSTRACT: BACKGROUND: Asbestos is the main cause of MPM in industrialized countries. Even since asbestos is banned in most developed countries, the peak wave of MPM incidence is anticipated for the next years due to the long latency of asbestos induced MPM. MPM patients not eligible for surgical procedures like decortication or pleuro-pneumectomie have a median survival of 12 months with palliative chemotherapy. Therefore, new therapeutic approaches are of crucial need in this clinical situation. METHODS: This is a phase I trial for patients with malignant pleural mesothelioma with pleural effusion testing the safety of a fixed single dose of 1x106 adoptively transferred FAP-specific re-directed T cells given directly in the pleural effusion. Lymphocytes will be taken 21 days before transfer from peripheral blood. CD8 positive T cells will be isolated and re-programmed by retroviral transfer of a chimeric antigen receptor recognizing FAP which serves as target structure in MPM. At day 0 of the protocol, re-directed T cells will be injected in the pleural effusion and patients will be monitored for 48h under intermediate care conditions. AE, SAE, SADR and SUSAR will be monitored for 35 days and evaluated by an independent safety board to define any dose limiting toxicity (DLT). No further patient can be treated before the previous patient passed day 14 after T cell transfer. The protocol will be judged as save when no DLT occurred in the first 3 patients, or 1 DLT in 6 patients. Secondary objectives are feasibility and immune monitoring. DISCUSSION: Adoptive T cell transfer is a new and rapidly expanding branch of immunotherapies focusing on cancer treatment. Recently, objective responses could be observed in patients with chronic lymphatic leukemia treated with adoptively transferred CD19-specific re-directed T cells. The choice of the target antigen determines the possible on-target off-tissue toxicity of such approaches. There are reports of severe toxicity in patients who received T cells intravenously due to unexpected expression of the target antigen (on-target) in other tissues than the tumor (off-tissue). To minimize the risk of on-target off-tissue toxicity and to maximize the on-target anti-tumor effect we propose a clinical protocol with loco-regional administration of re-directed T cells. FAP-specific T cells will be directly injected in the pleural effusion of patients with MPM.Trial registration: ClinicalTrials.gov (NCT01722149)
Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability
Endothelial to mesenchymal transition (EndMT) plays a major role during development, and also contributes to several adult cardiovascular diseases. Importantly, mesenchymal cells including fibroblasts are prominent in atherosclerosis, with key functions including regulation of: inflammation, matrix and collagen production, and plaque structural integrity. However, little is known about the origins of atherosclerosis-associated fibroblasts. Here we show using endothelial-specific lineage-tracking that EndMT-derived fibroblast-like cells are common in atherosclerotic lesions, with EndMT-derived cells expressing a range of fibroblast-specific markers. In vitro modelling confirms that EndMT is driven by TGF-β signalling, oxidative stress and hypoxia; all hallmarks of atherosclerosis. ‘Transitioning' cells are readily detected in human plaques co-expressing endothelial and fibroblast/mesenchymal proteins, indicative of EndMT. The extent of EndMT correlates with an unstable plaque phenotype, which appears driven by altered collagen-MMP production in EndMT-derived cells. We conclude that EndMT contributes to atherosclerotic patho-biology and is associated with complex plaques that may be related to clinical events
Contribution of IKBKE and IFIH1 gene variants to SLE susceptibility
The type I interferon system genes IKBKE and IFIH1 are associated with the risk of systemic lupus erythematosus (SLE). To identify the sequence variants that are able to account for the disease association, we resequenced the genes IKBKE and IFIH1. Eighty-six single-nucleotide variants (SNVs) with potentially functional effect or differences in allele frequencies between patients and controls determined by sequencing were further genotyped in 1140 SLE patients and 2060 controls. In addition, 108 imputed sequence variants in IKBKE and IFIH1 were included in the association analysis. Ten IKBKE SNVs and three IFIH1 SNVs were associated with SLE. The SNVs rs1539241 and rs12142086 tagged two independent association signals in IKBKE, and the haplotype carrying their risk alleles showed an odds ratio of 1.68 (P-value=1.0 × 10−5). The risk allele of rs12142086 affects the binding of splicing factor 1 in vitro and could thus influence its transcriptional regulatory function. Two independent association signals were also detected in IFIH1, which were tagged by a low-frequency SNV rs78456138 and a missense SNV rs3747517. Their joint effect is protective against SLE (odds ratio=0.56; P-value=6.6 × 10−3). In conclusion, we have identified new SLE-associated sequence variants in IKBKE and IFIH1, and proposed functional hypotheses for the association signals.De två första författarna delar förstaförfattarskapet.</p
