22 research outputs found
Extracellular NAD and ATP: Partners in immune cell modulation
Extracellular NAD and ATP exert multiple, partially overlapping effects on immune cells. Catabolism of both nucleotides by extracellular enzymes keeps extracellular concentrations low under steady-state conditions and generates metabolites that are themselves signal transducers. ATP and its metabolites signal through purinergic P2 and P1 receptors, whereas extracellular NAD exerts its effects by serving as a substrate for ADP-ribosyltransferases (ARTs) and NAD glycohydrolases/ADPR cyclases like CD38 and CD157. Both nucleotides activate the P2X7 purinoceptor, although by different mechanisms and with different characteristics. While ATP activates P2X7 directly as a soluble ligand, activation via NAD occurs by ART-dependent ADP-ribosylation of cell surface proteins, providing an immobilised ligand. P2X7 activation by either route leads to phosphatidylserine exposure, shedding of CD62L, and ultimately to cell death. Activation by ATP requires high micromolar concentrations of nucleotide and is readily reversible, whereas NAD-dependent stimulation begins at low micromolar concentrations and is more stable. Under conditions of cell stress or inflammation, ATP and NAD are released into the extracellular space from intracellular stores by lytic and non-lytic mechanisms, and may serve as ‘danger signals–to alert the immune response to tissue damage. Since ART expression is limited to naïve/resting T cells, P2X7-mediated NAD-induced cell death (NICD) specifically targets this cell population. In inflamed tissue, NICD may inhibit bystander activation of unprimed T cells, reducing the risk of autoimmunity. In draining lymph nodes, NICD may eliminate regulatory T cells or provide space for the preferential expansion of primed cells, and thus help to augment an immune response
Traumatic neuroma of the superficial peroneal nerve in a patient: a case report and review of the literature
The cost burden of falls in people with glaucoma in National Health Service Hospital Trusts in the UK
Modelling Sediment Input to Surface Waters for German States with MEPhos: Methodology, Sensitivity and Uncertainty
#digital hood: Engagement with Risk Content on Social Media among Black and Hispanic Youth
Involvement of P2X receptors in the NAD+-induced rise in [Ca2+]i in human monocytes
In the present study, we show that the extracellular addition of nicotinamide adenine dinucleotide (NAD+) induces a transient rise in [Ca2+]i in human monocytes caused by an influx of extracellular calcium. The NAD+-induced Ca2+ response was prevented by adenosine triphosphate (ATP), suggesting the involvement of ATP receptors. Of the two subtypes of ATP receptors (P2X and P2Y), the P2X receptors were considered the most likely candidates. By the use of subtype preferential agonists and antagonists, we identified P2X1, P2X4, and P2X7 receptors being engaged in the NAD+-induced rise in [Ca2+]i. Among the P2X receptor subtypes, the P2X7 receptor is unique in facilitating the induction of nonselective pores that allow entry of ethidium upon stimulation with ATP. In monocytes, opening of P2X7 receptor-dependent pores strongly depends on specific ionic conditions. Measuring pore formation in response to NAD+, we found that NAD+ unlike ATP lacks the ability to induce this pore-forming response. Whereas as little as 100 μM ATP was sufficient to activate the nonselective pore, NAD+ at concentrations up to 2 mM had no effect. Taken together, these data indicate that despite similarities in the action of extracellular NAD+ and ATP there are nucleotide-specific variations. So far, common and distinct features of the two nucleotides are only beginning to be understood
