666 research outputs found

    The singlet scalar as FIMP dark matter

    Full text link
    The singlet scalar model is a minimal extension of the Standard Model that can explain the dark matter. We point out that in this model the dark matter constraint can be satisfied not only in the already considered WIMP regime but also, for much smaller couplings, in the Feebly Interacting Massive Particle (FIMP) regime. In it, dark matter particles are slowly produced in the early Universe but are never abundant enough to reach thermal equilibrium or annihilate among themselves. This alternative framework is as simple and predictive as the WIMP scenario but it gives rise to a completely different dark matter phenomenology. After reviewing the calculation of the dark matter relic density in the FIMP regime, we study in detail the evolution of the dark matter abundance in the early Universe and the predicted relic density as a function of the parameters of the model. A new dark matter compatible region of the singlet model is identified, featuring couplings of order 10^-11 to 10^-12 for singlet masses in the GeV to TeV range. As a consequence, no signals at direct or indirect detection experiments are expected. The relevance of this new viable region for the correct interpretation of recent experimental bounds is emphasized.Comment: 12 pages, 6 figure

    Statistical challenges in assessing potential efficacy of complex interventions in pilot or feasibility studies

    Get PDF
    Early phase trials of complex interventions currently focus on assessing the feasibility of a large RCT and on conducting pilot work. Assessing the efficacy of the proposed intervention is generally discouraged, due to concerns of underpowered hypothesis testing. In contrast, early assessment of efficacy is common for drug therapies, where phase II trials are often used as a screening mechanism to identify promising treatments. In this paper we outline the challenges encountered in extending ideas developed in the phase II drug trial literature to the complex intervention setting. The prevalence of multiple endpoints and clustering of outcome data are identified as important considerations, having implications for timely and robust determination of optimal trial design parameters. The potential for Bayesian methods to help to identify robust trial designs and optimal decision rules is also explored

    Impaired perceptual learning in a mouse model of Fragile X syndrome is mediated by parvalbumin neuron dysfunction and is reversible.

    Get PDF
    To uncover the circuit-level alterations that underlie atypical sensory processing associated with autism, we adopted a symptom-to-circuit approach in the Fmr1-knockout (Fmr1-/-) mouse model of Fragile X syndrome. Using a go/no-go task and in vivo two-photon calcium imaging, we find that impaired visual discrimination in Fmr1-/- mice correlates with marked deficits in orientation tuning of principal neurons and with a decrease in the activity of parvalbumin interneurons in primary visual cortex. Restoring visually evoked activity in parvalbumin cells in Fmr1-/- mice with a chemogenetic strategy using designer receptors exclusively activated by designer drugs was sufficient to rescue their behavioral performance. Strikingly, human subjects with Fragile X syndrome exhibit impairments in visual discrimination similar to those in Fmr1-/- mice. These results suggest that manipulating inhibition may help sensory processing in Fragile X syndrome

    The effectiveness of public health interventions to reduce the health impact of climate change:a systematic review of systematic reviews

    Get PDF
    Climate change is likely to be one of the most important threats to public health in the coming years. Yet despite the large number of papers considering the health impact of climate change, few have considered what public health interventions may be of most value in reducing the disease burden. We aimed to evaluate the effectiveness of public health interventions to reduce the disease burden of high priority climate sensitive diseases

    Dynamics of interferon-gamma release assay and cytokine profiles in blood and respiratory tract specimens from mice with tuberculosis and the effect of therapy

    Get PDF
    There are limitations on diagnostic methods to differentiate between active and latent tuberculosis (TB), and the prediction of latent progression to TB disease is yet complex. Traditionally, tuberculosis-specific host immune response was visualized using the tuberculin skin test. Nowadays, IFN-γ release assays (IGRA) provide a more specific and sensitive tool, by which exposure to Mtb could be determined. However, the merit of IGRA aids in diagnosing active TB is yet unclear. We adapted IGRA for use in mice, and quantifying bead-based flow cytometry techniques were used to assess cytokine profiles during the course of untreated infection and to investigate the value of IGRA and cytokines as biomarkers for therapy response. High variability of IGRA results during progression of active TB infection related to various phases of infection was obtained. However, a significant decrease in IGRA results and in levels of IFN-γ, IL-17, IP-10 or MIG was observed and appeared to be associated with successful therapy. This outcome does not support the value of IGRA to accurately diagnose active TB or to monitor infection progression. However, IGRA proved to be a useful biomarker to monitor therapy success. In addition, different cytokines might serve as biomarkers

    Secluded Dark Matter Coupled to a Hidden CFT

    Full text link
    Models of secluded dark matter offer a variant on the standard WIMP picture and can modify our expectations for hidden sector phenomenology and detection. In this work we extend a minimal model of secluded dark matter, comprised of a U(1)'-charged dark matter candidate, to include a confining hidden-sector CFT. This provides a technically natural explanation for the hierarchically small mediator-scale, with hidden-sector confinement generating m_{gamma'}>0. Furthermore, the thermal history of the universe can differ markedly from the WIMP picture due to (i) new annihilation channels, (ii) a (potentially) large number of hidden-sector degrees of freedom, and (iii) a hidden-sector phase transition at temperatures T << M_{dm} after freeze out. The mediator allows both the dark matter and the Standard Model to communicate with the CFT, thus modifying the low-energy phenomenology and cosmic-ray signals from the secluded sector.Comment: ~50p, 8 figs; v2 JHEP versio

    Decision-making, cognitive distortions and alcohol use in adolescent problem and non-problem gamblers: an experimental study

    Get PDF
    In the psychological literature, many studies have investigated the neuropsychological and behavioral changes that occur developmentally during adolescence. These studies have consistently observed a deficit in the decision-making ability of children and adolescents. This deficit has been ascribed to incomplete brain development. The same deficit has also been observed in adult problem and pathological gamblers. However, to date, no study has examined decision-making in adolescents with and without gambling problems. Furthermore, no study has ever examined associations between problem gambling, decision-making, cognitive distortions and alcohol use in youth. To address these issues, 104 male adolescents participated in this study. They were equally divided in two groups, problem gamblers and non-problem gamblers, based on South Oaks Gambling Screen Revised for Adolescents scores. All participants performed the Iowa Gambling Task and completed the Gambling Related Cognitions Scale and the Alcohol Use Disorders Identification Test. Adolescent problem gamblers displayed impaired decision-making, reported high cognitive distortions, and had more problematic alcohol use compared to non-problem gamblers. Strong correlations between problem gambling, alcohol use, and cognitive distortions were observed. Decision-making correlated with interpretative bias. This study demonstrated that adolescent problem gamblers appear to have the same psychological profile as adult problem gamblers and that gambling involvement can negatively impact on decision-making ability that, in adolescence, is still developing. The correlations between interpretative bias and decision-making suggested that the beliefs in the ability to influence gambling outcomes may facilitate decision-making impairment

    Genomic variation landscape of the human gut microbiome

    Get PDF
    While large-scale efforts have rapidly advanced the understanding and practical impact of human genomic variation, the latter is largely unexplored in the human microbiome. We therefore developed a framework for metagenomic variation analysis and applied it to 252 fecal metagenomes of 207 individuals from Europe and North America. Using 7.4 billion reads aligned to 101 reference species, we detected 10.3 million single nucleotide polymorphisms (SNPs), 107,991 short indels, and 1,051 structural variants. The average ratio of non-synonymous to synonymous polymorphism rates of 0.11 was more variable between gut microbial species than across human hosts. Subjects sampled at varying time intervals exhibited individuality and temporal stability of SNP variation patterns, despite considerable composition changes of their gut microbiota. This implies that individual-specific strains are not easily replaced and that an individual might have a unique metagenomic genotype, which may be exploitable for personalized diet or drug intake

    Temporal and spatial variations in the parasitoid complex of the horse chestnut leafminer during its invasion of Europe

    Get PDF
    The enemy release hypothesis posits that the initial success of invasive species depends on the scarcity and poor adaptation of native natural enemies such as predators and parasitoids. As for parasitoids, invading hosts are first attacked at low rates by a species-poor complex of mainly generalist species. Over the years, however, parasitoid richness may increase either because the invading host continuously encounters new parasitoid species during its spread (geographic spread-hypothesis) or because local parasitoids need different periods of time to adapt to the novel host (adjustment-hypothesis). Both scenarios should result in a continuous increase of parasitoid richness over time. In this study, we reconstructed the development of the hymenopteran parasitoid complex of the invasive leafminer Cameraria ohridella (Lepidoptera, Gracillariidae). Our results show that the overall parasitism rate increases as a function of host residence time as well as geographic and climatic factors, altogether reflecting the historic spread of C. ohridella. The same variables also explain the individual parasitism rates of several species in the parasitoid complex, but fail to explain the abundance of others. Evidence supporting the “geographic spread-hypothesis” was found in the parasitism pattern of Cirrospilus talitzkii (Hymenoptera, Eulophidae), while that of Pediobius saulius, another eulophid, indicated an increase of parasitism rates by behavioral, phenological or biological adjustments. Compared to fully integrated host-parasitoid associations, however, parasitism rates of C. ohridella are still very low. In addition, the parasitoid complex lacks specialists, provided that the species determined are valid and not complexes of cryptic (and presumably more specialized) species. Probably, the adjustment of specialist parasitoids requires more than a few decades, particularly to invaders which establish in ecological niches free of native hosts, thus eliminating any possibility of recruitment of pre-adapted parasitoids

    Antimicrobial resistance (AMR) nanomachines: mechanisms for fluoroquinolone and glycopeptide recognition, efflux and/or deactivation

    Get PDF
    In this review, we discuss mechanisms of resistance identified in bacterial agents Staphylococcus aureus and the enterococci towards two priority classes of antibiotics—the fluoroquinolones and the glycopeptides. Members of both classes interact with a number of components in the cells of these bacteria, so the cellular targets are also considered. Fluoroquinolone resistance mechanisms include efflux pumps (MepA, NorA, NorB, NorC, MdeA, LmrS or SdrM in S. aureus and EfmA or EfrAB in the enterococci) for removal of fluoroquinolone from the intracellular environment of bacterial cells and/or protection of the gyrase and topoisomerase IV target sites in Enterococcus faecalis by Qnr-like proteins. Expression of efflux systems is regulated by GntR-like (S. aureus NorG), MarR-like (MgrA, MepR) regulators or a two-component signal transduction system (TCS) (S. aureus ArlSR). Resistance to the glycopeptide antibiotic teicoplanin occurs via efflux regulated by the TcaR regulator in S. aureus. Resistance to vancomycin occurs through modification of the D-Ala-D-Ala target in the cell wall peptidoglycan and removal of high affinity precursors, or by target protection via cell wall thickening. Of the six Van resistance types (VanA-E, VanG), the VanA resistance type is considered in this review, including its regulation by the VanSR TCS. We describe the recent application of biophysical approaches such as the hydrodynamic technique of analytical ultracentrifugation and circular dichroism spectroscopy to identify the possible molecular effector of the VanS receptor that activates expression of the Van resistance genes; both approaches demonstrated that vancomycin interacts with VanS, suggesting that vancomycin itself (or vancomycin with an accessory factor) may be an effector of vancomycin resistance. With 16 and 19 proteins or protein complexes involved in fluoroquinolone and glycopeptide resistances, respectively, and the complexities of bacterial sensing mechanisms that trigger and regulate a wide variety of possible resistance mechanisms, we propose that these antimicrobial resistance mechanisms might be considered complex ‘nanomachines’ that drive survival of bacterial cells in antibiotic environments
    corecore