81 research outputs found

    Visual, Motor and Attentional Influences on Proprioceptive Contributions to Perception of Hand Path Rectilinearity during Reaching

    Get PDF
    We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to the paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject driven) and passive (robot driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target versus when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel “visual channel” condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly, compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed

    Reduction in Learning Rates Associated with Anterograde Interference Results from Interactions between Different Timescales in Motor Adaptation

    Get PDF
    Prior experiences can influence future actions. These experiences can not only drive adaptive changes in motor output, but they can also modulate the rate at which these adaptive changes occur. Here we studied anterograde interference in motor adaptation – the ability of a previously learned motor task (Task A) to reduce the rate of subsequently learning a different (and usually opposite) motor task (Task B). We examined the formation of the motor system's capacity for anterograde interference in the adaptive control of human reaching-arm movements by determining the amount of interference after varying durations of exposure to Task A (13, 41, 112, 230, and 369 trials). We found that the amount of anterograde interference observed in the learning of Task B increased with the duration of Task A. However, this increase did not continue indefinitely; instead, the interference reached asymptote after 15–40 trials of Task A. Interestingly, we found that a recently proposed multi-rate model of motor adaptation, composed of two distinct but interacting adaptive processes, predicts several key features of the interference patterns we observed. Specifically, this computational model (without any free parameters) predicts the initial growth and leveling off of anterograde interference that we describe, as well as the asymptotic amount of interference that we observe experimentally (R2 = 0.91). Understanding the mechanisms underlying anterograde interference in motor adaptation may enable the development of improved training and rehabilitation paradigms that mitigate unwanted interference

    Cokriging for multivariate Hilbert space valued random fields: application to multi-fidelity computer code emulation

    Get PDF
    In this paper we propose Universal trace co-kriging, a novel methodology for interpolation of multivariate Hilbert space valued functional data. Such data commonly arises in multi-fidelity numerical modeling of the subsurface and it is a part of many modern uncertainty quantification studies. Besides theoretical developments we also present methodological evaluation and comparisons with the recently published projection based approach by Bohorquez et al. (Stoch Environ Res Risk Assess 31(1):53–70, 2016. https://doi.org/10.1007/s00477-016-1266-y). Our evaluations and analyses were performed on synthetic (oil reservoir) and real field (uranium contamination) subsurface uncertainty quantification case studies. Monte Carlo analyses were conducted to draw important conclusions and to provide practical guidelines for all future practitioners
    corecore