9 research outputs found

    Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey

    Full text link
    Although jawless vertebrates are apparently capable of adaptive immune responses, they have not been found to possess the recombinatorial antigen receptors shared by all jawed vertebrates. Our search for the phylogenetic roots of adaptive immunity in the lamprey has instead identified a new type of variable lymphocyte receptors (VLRs) composed of highly diverse leucine-rich repeats (LRR) sandwiched between amino- and carboxy-terminal LRRs. An invariant stalk region tethers the VLRs to the cell surface by means of a glycosyl-phosphatidyl-inositol anchor. To generate rearranged VLR genes of the diversity necessary for an anticipatory immune system, the single lamprey VLR locus contains a large bank of diverse LRR cassettes, available for insertion into an incomplete germline VLR gene. Individual lymphocytes express a uniquely rearranged VLR gene in monoallelic fashion. Different evolutionary strategies were thus used to generate highly diverse lymphocyte receptors through rearrangement of LRR modules in agnathans ( jawless fish) and of immunoglobulin gene segments in gnathostomes ( jawed vertebrates).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62870/1/nature02740.pd

    The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells.

    No full text
    A new procedure for rapid isolation of dendritic cells (DC) was devised, involving collagenase digestion of tissues, dissociation of lymphoid-DC complexes, selection of light-density cells, then depletion of lymphocytes and other non-DC by treatment with a mixture of lineage-specific monoclonal antibodies (mAbs) and removal with anti-immunoglobulin-coupled magnetic beads. This enriched population (approximately 80% DC) was further purified when required by fluorescence-activated cell sorting for cells expressing high levels of class II major histocompatibility complex (MHC). The isolated DC were characterized by immunofluorescent staining using a panel of 30 mAbs. Thymic DC were surface positive for a number of markers characteristic of T cells, but they were distinct from T-lineage cells in expressing high levels of class II MHC, in lacking expression of the T cell receptor (TCR)-CD3 complex, and having TCR beta and gamma genes in germline state. Splenic DC shared many markers with thymic DC, but were negative for most T cell markers, with the exception of CD8. A substantial proportion of DC from both thymus and spleen expressed CD8 at high levels, comparable with that on T cells. This appeared to be authentic CD8, and was produced by the DC themselves, since they contained CD8 alpha mRNA. Thymic DC presented both the CD8 alpha and beta chains on the cell surface (Ly-2+3+), although the alpha chain was in excess; the splenic DC expressed only the CD8 alpha chain (Ly-2+3-). It is suggested that the expression of CD8 could endow certain antigen-presenting DC with a veto function

    The evolutionary history of lymphoid organs

    No full text
    Lymphoid organs are important regulators of lymphocyte development and immune responses. During vertebrate evolution, primary lymphoid organs appeared earlier than secondary lymphoid organs. Among the sites of primary lymphopoiesis during evolution and ontogeny, those for B cell differentiation have differed considerably, although they often have had myelolymphatic characteristics. In contrast, only a single site for T cell differentiation has occurred, exclusively the thymus. Based on those observations and the known features of variable-diversity-joining gene recombination, we propose a model for the successive specification of different lymphocyte lineages during vertebrate evolution. According to our model, T cells were the first lymphocytes to acquire variable-diversity-joining-type receptors, and the thymus was the first lymphoid organ to evolve in vertebrates to deal with potentially autoreactive, somatically diversified T cell receptors

    Inducible lymphoid tissues in the adult gut: recapitulation of a fetal developmental pathway?

    No full text
    The intestinal immune system faces an extraordinary challenge from the large numbers of commensal bacteria and potential pathogens that are restrained by only a single layer of epithelial cells. Here, I discuss evidence that the intestinal immune system develops an extensive network of inducible, reversible lymphoid tissues that contributes to the vital equilibrium between the gut and the bacterial flora. I propose that this network is induced by cryptopatches, which are small clusters of dendritic cells and lymphoid cells that are identical to fetal inducers of lymph-node and Peyer's-patch development

    Lamprey Reproduction and Early Life History: Insights from Artificial Propagation

    No full text
    corecore