24 research outputs found
Surgical impact on brain tumor invasion: A physical perspective
It is conventional strategy to treat highly malignant brain tumors initially with cytoreductive surgery followed by adjuvant radio- and chemotherapy. However, in spite of all such efforts, the patients' prognosis remains dismal since residual glioma cells continue to infiltrate adjacent parenchyma and the tumors almost always recur. On the basis of a simple biomechanical conjecture that we have introduced previously, we argue here that by affecting the 'volume-pressure' relationship and minimizing surface tension of the remaining tumor cells, gross total resection may have an inductive effect on the invasiveness of the tumor cells left behind. Potential implications for treatment strategies are discussed
Preclinical Assessment Performance as a Predictor of USMLE Step 1 Scores or Passing Status
Atlantoaxial fusion using anterior transarticular screw fixation of C1–C2: technical innovation and biomechanical study
An experimental 392-year documentary-based multi-proxy (vine and grain) reconstruction of May-July temperatures for KAszeg, West-Hungary
In this paper, we present a 392-year-long preliminary temperature reconstruction for western Hungary. The reconstructed series is based on five vine- and grain-related historical phenological series from the town of KAszeg. We apply dendrochronological methods for both signal assessment of the phenological series and the resultant temperature reconstruction. As a proof of concept, the present reconstruction explains 57% of the temperature variance of May-July Budapest mean temperatures and is well verified with coefficient of efficiency values in excess of 0.45. The developed temperature reconstruction portrays warm conditions during the late seventeenth and early eighteenth centuries with a period of cooling until the coldest reconstructed period centred around 1815, which was followed by a period of warming until the 1860s. The phenological evidence analysed here represent an important data source from which non-biased estimates of past climate can be derived that may provide information at all possible time-scales.</p
Powdery mildew decreases the radial growth of oak trees with cumulative and delayed effects over years
Quercus robur and Q. petraea are major European forest tree species. They have been affected by powdery mildew caused by Erysiphe alphitoides for more than a century. This fungus is a biotrophic foliar pathogen that diverts photosynthetate from the plant for its own nutrition. We used a dendrochronological approach to investigate the effects of different levels of infection severity on the radial growth of young oak trees. Oak infection was monitored at individual tree level, at two sites in southwestern France, over a five-year period (2001–2005). Mean infection severity was almost 75% (infected leaf area) at the end of the 2001 growing season, at both sites, but only about 40% in 2002, and 8%, 5% and 2% in 2003, 2004 and 2005, respectively. Infection levels varied considerably between trees and were positively related between 2001 and 2002. Increment cores were taken from each tree to assess annual ring widths and increases in basal area. Annual radial growth was standardised to take the effect of tree size into account. Annual standardised radial growth was significantly and negatively correlated with infection severity in the same year, for both 2001 and 2002, and at both sites. The decrease in growth reached 70–90% for highly infected trees. The earlywood width was poorly correlated with infection severity, but the proportion of latewood in tree rings was lower in highly infected trees (60%) than in less heavily infected trees (85%). Infection in 2001 and 2002 was found to have a cumulative effect on radial growth in these years, together with a delayed effect detectable in 2003. Thus, even non-lethal pathogens like powdery mildew can have a significant impact on tree functioning. This impact should be taken into account in growth and yield models, to improve predictions of forest net primary production
The Fungal Exopolysaccharide Galactosaminogalactan Mediates Virulence by Enhancing Resistance to Neutrophil Extracellular Traps.
International audienceOf the over 250 Aspergillus species, Aspergillus fumigatus accounts for up to 80% of invasive human infections. A. fumigatus produces galactosaminogalactan (GAG), an exopolysaccharide composed of galactose and N-acetyl-galactosamine (GalNAc) that mediates adherence and is required for full virulence. Less pathogenic Aspergillus species were found to produce GAG with a lower GalNAc content than A. fumigatus and expressed minimal amounts of cell wall-bound GAG. Increasing the GalNAc content of GAG of the minimally pathogenic A. nidulans, either through overexpression of the A. nidulans epimerase UgeB or by heterologous expression of the A. fumigatus epimerase Uge3 increased the amount of cell wall bound GAG, augmented adherence in vitro and enhanced virulence in corticosteroid-treated mice to levels similar to A. fumigatus. The enhanced virulence of the overexpression strain of A. nidulans was associated with increased resistance to NADPH oxidase-dependent neutrophil extracellular traps (NETs) in vitro, and was not observed in neutropenic mice or mice deficient in NADPH-oxidase that are unable to form NETs. Collectively, these data suggest that cell wall-bound GAG enhances virulence through mediating resistance to NETs
