17 research outputs found
The female perspective of personality in a wild songbird: repeatable aggressiveness relates to exploration behaviour
ABSTRACT: Males often express traits that improve competitive ability, such as aggressiveness. Females also express such traits but our understanding about why is limited. Intraspecific aggression between females might be used to gain access to reproductive resources but simultaneously incurs costs in terms of energy and time available for reproductive activities, resulting in a trade-off. Although consistent individual differences in female behaviour (i.e. personality) like aggressiveness are likely to influence these reproductive trade-offs, little is known about the consistency of aggressiveness in females. To quantify aggression we presented a female decoy to free-living female great tits (Parus major) during the egg-laying period, and assessed whether they were consistent in their response towards this decoy. Moreover, we assessed whether female aggression related to consistent individual differences in exploration behaviour in a novel environment. We found that females consistently differed in aggressiveness, although first-year females were on average more aggressive than older females.
Moreover, conform life history theory predictions, ‘fast’ exploring females were more aggressive towards the decoy than ‘slow’ exploring females. Given that personality traits are often heritable, and correlations between behaviours can constrain short term adaptive evolution, our findings highlight the importance of studying female aggression within a multivariate behavioural framework
Egg survival is reduced by grave-soil microbes in the carrion beetle, Nicrophorus vespilloides
Darker eggs of mosquitoes resist more to dry conditions: Melanin enhances serosal cuticle contribution in egg resistance to desiccation in Aedes, Anopheles and Culex vectors
Mosquito vectors lay their white eggs in the aquatic milieu. During early embryogenesis water passes freely through the transparent eggshell, which at this moment is composed of exochorion and endochorion. Within two hours the endochorion darkens via melanization but even so eggs shrink and perish if removed from moisture. However, during mid-embryogenesis, cells of the extraembryonic serosa secrete the serosal cuticle, localized right below the endochorion, becoming the third and innermost eggshell layer. Serosal cuticle formation greatly reduces water flow and allows egg survival outside the water. The degree of egg resistance to desiccation (ERD) at late embryogenesis varies among different species: Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus eggs can survive in a dry environment for ≥ 72, 24 and 5 hours, respectively. In some adult insects, darker-body individuals show greater resistance to desiccation than lighter ones. We asked if egg melanization enhances mosquito serosal cuticle-dependent ERD. Species with higher ERD at late embryogenesis exhibit more melanized eggshells. The melanization-ERD hypothesis was confirmed employing two Anopheles quadrimaculatus strains, the wild type and the mutant GORO, with a dark-brown and a golden eggshell, respectively. In all cases, serosal cuticle formation is fundamental for the establishment of an efficient ERD but egg viability outside the water is much higher in mosquitoes with darker eggshells than in those with lighter ones. The finding that pigmentation influences egg water balance is relevant to understand the evolutionary history of insect egg coloration. Since eggshell and adult cuticle pigmentation ensure insect survivorship in some cases, they should be considered regarding species fitness and novel approaches for vector or pest insects control
Regionalized tissue fluidization is required for epithelial gap closure during insect gastrulation
Trans-generational Immune Priming Protects the Eggs Only against Gram-Positive Bacteria in the Mealworm Beetle
Visualizing Late Insect Embryogenesis: Extraembryonic and Mesodermal Enhancer Trap Expression in the Beetle Tribolium castaneum
Sex, offspring and carcass determine antimicrobial peptide expression in the burying beetle
The burying beetle Nicrophorus vespilloides has emerged as a model system for the investigation of adaptations that allow the utilization of carrion as a diet and as a resource for reproduction. The survival of beetles and their offspring given their exposure to soil-dwelling and cadaver-borne microbes requires mechanisms that reduce bacterial contamination in the diet and that achieve sanitation of the microhabitat. To explore the role of antimicrobial peptides (AMPs) in this context, we analyzed burying beetle males and females at different stages of their breeding cycle using the RNA-Seq and proteomics approaches. To address variation in immune functions, we investigated the impact of adult sex, the presence or absence of offspring (social context), and the presence of carrion (environmental context) on the expression of the identified immune effector genes. We found that particular AMPs are sex-specific and tightly regulated by the presence of a carcass or offspring and identified the two most context-dependent antimicrobial proteins in anal secretions. The context-specific expression dynamics of particular AMPs and lysozymes reveals a complex regulatory system, reflecting adaptations to specific ecological niches. This study highlights how burying beetles cope with microorganisms found on carrion and identifies candidates for both internal and external immunity
