18,112 research outputs found
Anomalous Lattice Response at the Mott Transition in a Quasi-2D Organic Conductor
Discontinuous changes of the lattice parameters at the Mott metal-insulator
transition are detected by high-resolution dilatometry on deuterated crystals
of the layered organic conductor -(BEDT-TTF)Cu[N(CN)]Br.
The uniaxial expansivities uncover a striking and unexpected anisotropy,
notably a zero-effect along the in-plane c-axis along which the electronic
interactions are relatively strong. A huge thermal expansion anomaly is
observed near the end-point of the first-order transition line enabling to
explore the critical behavior with very high sensitivity. The analysis yields
critical fluctuations with an exponent 0.8 0.15
at odds with the novel criticality recently proposed for these materials
[Kagawa \textit{et al.}, Nature \textbf{436}, 534 (2005)]. Our data suggest an
intricate role of the lattice degrees of freedom in the Mott transition for the
present materials.Comment: 4 pages, 4 figure
Thermal effects on nuclear symmetry energy with a momentum-dependent effective interaction
The knowledge of the nuclear symmetry energy of hot neutron-rich matter is
important for understanding the dynamical evolution of massive stars and the
supernova explosion mechanisms. In particular, the electron capture rate on
nuclei and/or free protons in presupernova explosions is especially sensitive
to the symmetry energy at finite temperature. In view of the above, in the
present work we calculate the symmetry energy as a function of the temperature
for various values of the baryon density, by applying a momentum-dependent
effective interaction. In addition to a previous work, the thermal effects are
studied separately both in the kinetic part and the interaction part of the
symmetry energy. We focus also on the calculations of the mean field potential,
employed extensively in heavy ion reaction research, both for nuclear and pure
neutron matter. The proton fraction and the electron chemical potential, which
are crucial quantities for representing the thermal evolution of supernova and
neutron stars, are calculated for various values of the temperature. Finally,
we construct a temperature dependent equation of state of -stable
nuclear matter, the basic ingredient for the evaluation of the neutron star
properties.Comment: 18 pages, 10 figures, 1 table, accepted for publication in Physical
Review
Schwoebel-Ehrlich barrier : from two to three dimensions
Author name used in this publication: C. H. Woo2001-2002 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Charge-Trapping Characteristics of BaTiO3 with and without Nitridation for Nonvolatile Memory Applications
postprin
Charge-trapping characteristics of niobium-doped La2O3 for nonvolatile memory applications
published_or_final_versio
Nb-Doped La2O3 as Charge-Trapping Layer for Nonvolatile Memory Applications
published_or_final_versio
A quantitative study of the relationship between the oxide charge trapping over the drain extension and the off-state drain leakage current
In this letter, we report an approach to quantitative study of the relationship between the oxide charge trapping over the drain extension due to electrical stress and the off-state drain leakage current. It is found that positive charge trapping over the drain extension leads to a significant increase in the off-state drain current if the edge direct tunneling (EDT) is dominant in the drain current but in contrast, it leads to a reduction in the drain current if the band-to-band tunneling in the Si surface is dominant. A quantitative relationship between the charge trapping and the off-state drain leakage current in the EDT regime is established. From the measurement of the off-state current in the EDT regime, the charge trapping can be determined by using the approach developed in this study. © 2004 American Institute of Physics.published_or_final_versio
Residue codes of extremal Type II Z_4-codes and the moonshine vertex operator algebra
In this paper, we study the residue codes of extremal Type II Z_4-codes of
length 24 and their relations to the famous moonshine vertex operator algebra.
The main result is a complete classification of all residue codes of extremal
Type II Z_4-codes of length 24. Some corresponding results associated to the
moonshine vertex operator algebra are also discussed.Comment: 21 pages, shortened from v
Angiogenic inhibitors delivered by the type III secretion system of tumor-targeting Salmonella typhimurium safely shrink tumors in mice
published_or_final_versio
Theoretical prediction on the structural, electronic, and polarization properties of tetragonal Bi₂ZnTiO₆
Author name used in this publication: C. H. Woo2008-2009 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
- …
