2,319 research outputs found
A novel self-assembled oligopeptide amphiphile for biomimetic mineralization of enamel
Background Researchers are looking for biomimetic mineralization of ena/mel to manage dental erosion. This study evaluated biomimetic mineralization of demineralized enamel induced by a synthetic and self-assembled oligopeptide amphiphile (OPA). Results The results showed that the OPA self-assembled into nano-fibres in the presence of calcium ions and in neutral acidity. The OPA was alternately immersed in calcium chloride and sodium hypophosphate solutions to evaluate its property of mineralization. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed nucleation and growth of amorphous calcium phosphate along the self-assembled OPA nano-fibres when it was repetitively exposed to solutions with calcium and phosphate ions. Energy dispersive spectrometry (EDS) confirmed that these nano-particles contained calcium and phosphate. Furthermore, electron diffraction pattern suggested that the nano-particles precipitated on OPA nano-fibres were comparable to amorphous calcium phosphate. Acid-etched human enamel slices were incubated at 37°C in metastable calcium phosphate solution with the OPA for biomimetic mineralization. SEM and X-ray diffraction indicated that the OPA induced the formation of hydroxyapatite crystals in organized bundles on etched enamel. TEM micrographs revealed there were 20–30 nm nano-amorphous calcium phosphate precipitates in the biomimetic mineralizing solution. The particles were found separately bound to the oligopeptide fibres. Biomimetic mineralization with or without the oligopeptide increased demineralized enamel microhardness. Conclusions A novel OPA was successfully fabricated, which fostered the biomimetic mineralization of demineralized enamel. It is one of the primary steps towards the design and construction of novel biomaterial for future clinical therapy of dental erosion.published_or_final_versio
Dynamic study on fusion reactions for Ca+Zr around Coulomb barrier
By using the updated improved Quantum Molecular Dynamics model in which a
surface-symmetry potential term has been introduced for the first time, the
excitation functions for fusion reactions of Ca+Zr at
energies around the Coulomb barrier have been studied. The experimental data of
the fusion cross sections for Ca+Zr have been reproduced
remarkably well without introducing any new parameters. The fusion cross
sections for the neutron-rich fusion reactions of Ca+Zr around
the Coulomb barrier are predicted to be enhanced compared with a
non-neutron-rich fusion reaction. In order to clarify the mechanism of the
enhancement of the fusion cross sections for neutron-rich nuclear fusions, we
pay a great attention to study the dynamic lowering of the Coulomb barrier
during a neck formation. The isospin effect on the barrier lowering is
investigated. It is interesting that the effect of the projectile and target
nuclear structure on fusion dynamics can be revealed to a certain extent in our
approach. The time evolution of the N/Z ratio at the neck region has been
firstly illustrated. A large enhancement of the N/Z ratio at neck region for
neutron-rich nuclear fusion reactions is found.Comment: 21 pages, 7 figures,3 table
An Improved Quantum Molecular Dynamics Model and its Applications to Fusion Reaction near Barrier
An improved Quantum Molecular Dynamics model is proposed. By using this
model, the properties of ground state of nuclei from Li to Pb can
be described very well with one set of parameters. The fusion reactions for
Ca+Zr, Ca+Zr and Ca+Zr at energy near
barrier are studied by this model. The experimental data of the fusion cross
sections for Ca+Zr at the energy near barrier can be
reproduced remarkably well without introducing any new parameters. The
mechanism for the enhancement of fusion probability for fusion reactions with
neutron-rich projectile or target is analyzed.Comment: 20 pages, 12 figures, 3 table
East Asian hydroclimate modulated by the position of the westerlies during Termination I.
Speleothem oxygen isotope records have revolutionized our understanding of the paleo East Asian monsoon, yet there is fundamental disagreement on what they represent in terms of the hydroclimate changes. We report a multiproxy speleothem record of monsoon evolution during the last deglaciation from the middle Yangtze region, which indicates a wetter central eastern China during North Atlantic cooling episodes, despite the oxygen isotopic record suggesting a weaker monsoon. We show that this apparent contradiction can be resolved if the changes are interpreted as a lengthening of the Meiyu rains and shortened post-Meiyu stage, in accordance with a recent hypothesis. Model simulations support this interpretation and further reveal the role of the westerlies in communicating the North Atlantic influence to the East Asian climate
Ripple Texturing of Suspended Graphene Atomic Membranes
Graphene is the nature's thinnest elastic membrane, with exceptional
mechanical and electrical properties. We report the direct observation and
creation of one-dimensional (1D) and 2D periodic ripples in suspended graphene
sheets, using spontaneously and thermally induced longitudinal strains on
patterned substrates, with control over their orientations and wavelengths. We
also provide the first measurement of graphene's thermal expansion coefficient,
which is anomalously large and negative, ~ -7x10^-6 K^-1 at 300K. Our work
enables novel strain-based engineering of graphene devices.Comment: 15 pages, 4 figure
Experimental Demonstration of Five-photon Entanglement and Open-destination Teleportation
Universal quantum error-correction requires the ability of manipulating
entanglement of five or more particles. Although entanglement of three or four
particles has been experimentally demonstrated and used to obtain the extreme
contradiction between quantum mechanics and local realism, the realization of
five-particle entanglement remains an experimental challenge. Meanwhile, a
crucial experimental challenge in multi-party quantum communication and
computation is the so-called open-destination teleportation. During
open-destination teleportation, an unknown quantum state of a single particle
is first teleported onto a N-particle coherent superposition to perform
distributed quantum information processing. At a later stage this teleported
state can be readout at any of the N particles for further applications by
performing a projection measurement on the remaining N-1 particles. Here, we
report a proof-of-principle demonstration of five-photon entanglement and
open-destination teleportation. In the experiment, we use two entangled photon
pairs to generate a four-photon entangled state, which is then combined with a
single photon state to achieve the experimental goals. The methods developed in
our experiment would have various applications e.g. in quantum secret sharing
and measurement-based quantum computation.Comment: 19 pages, 4 figures, submitted for publication on 15 October, 200
Robust isothermal electric switching of interface magnetization: A route to voltage-controlled spintronics
Roughness-insensitive and electrically controllable magnetization at the
(0001) surface of antiferromagnetic chromia is observed using magnetometry and
spin-resolved photoemission measurements and explained by the interplay of
surface termination and magnetic ordering. Further, this surface in placed in
proximity with a ferromagnetic Co/Pd multilayer film. Exchange coupling across
the interface between chromia and Co/Pd induces an electrically controllable
exchange bias in the Co/Pd film, which enables a reversible isothermal (at room
temperature) shift of the global magnetic hysteresis loop of the Co/Pd film
along the magnetic field axis between negative and positive values. These
results reveal the potential of magnetoelectric chromia for spintronic
applications requiring non-volatile electric control of magnetization.Comment: Single PDF file: 27 pages, 6 figures; version of 12/30/09; submitted
to Nature Material
Measurement of the Cross Section between 600 and 900 MeV Using Initial State Radiation
We extract the cross section in the energy
range between 600 and 900 MeV, exploiting the method of initial state
radiation. A data set with an integrated luminosity of 2.93 fb taken at
a center-of-mass energy of 3.773 GeV with the BESIII detector at the BEPCII
collider is used. The cross section is measured with a systematic uncertainty
of 0.9%. We extract the pion form factor as well as the
contribution of the measured cross section to the leading order hadronic vacuum
polarization contribution to . We find this value to be
.Comment: 14 pages, 7 figures, accepted by PL
- …
