1,040 research outputs found
Two-point density correlations of quasicondensates in free expansion
We measure the two-point density correlation function of freely expanding
quasicondensates in the weakly interacting quasi-one-dimensional (1D) regime.
While initially suppressed in the trap, density fluctuations emerge gradually
during expansion as a result of initial phase fluctuations present in the
trapped quasicondensate. Asymptotically, they are governed by the thermal
coherence length of the system. Our measurements take place in an intermediate
regime where density correlations are related to near-field diffraction effects
and anomalous correlations play an important role. Comparison with a recent
theoretical approach described by Imambekov et al. yields good agreement with
our experimental results and shows that density correlations can be used for
thermometry of quasicondensates.Comment: 4 pages, 4 figures, minor change
The molecular and dusty composition of Betelgeuse's inner circumstellar environment
The study of the atmosphere of red supergiant stars in general and of
Betelgeuse (alpha Orionis) in particular is of prime importance to understand
dust formation and how mass is lost to the interstellar medium in evolved
massive stars. A molecular shell, the MOLsphere (Tsuji, 2000a), in the
atmosphere of Betelgeuse has been proposed to account for the near- and
mid-infrared spectroscopic observations of Betelgeuse. The goal is to further
test this hypothesis and to identify some of the molecules in this MOLsphere.
We report on measurements taken with the mid-infrared two-telescope beam
combiner of the VLTI, MIDI, operated between 7.5 and 13.5 m. The data are
compared to a simple geometric model of a photosphere surrounded by a warm
absorbing and emitting shell. Physical characteristics of the shell are
derived: size, temperature and optical depth. The chemical constituents are
determined with an analysis consistent with available infrared spectra and
interferometric data. We are able to account for the measured optical depth of
the shell in the N band, the ISO-SWS spectrum and K and L band interferometric
data with a shell whose inner and outer radii are given by the above range and
with the following species: H2O, SiO and Al2O3. These results confirm the
MOLsphere model. We bring evidence for more constituents and for the presence
of species participating in the formation of dust grains in the atmosphere of
the star, i.e. well below the distance at which the dust shell is detected. We
believe these results bring key elements to the understanding of mass loss in
Betelgeuse and red supergiants in general and bring support to the dust-driven
scenario.Comment: 11 pages, 10 figures, accepted for publication in A&
Two-point phase correlations of a one-dimensional bosonic Josephson junction
We realize a one-dimensional Josephson junction using quantum degenerate Bose
gases in a tunable double well potential on an atom chip. Matter wave
interferometry gives direct access to the relative phase field, which reflects
the interplay of thermally driven fluctuations and phase locking due to
tunneling. The thermal equilibrium state is characterized by probing the full
statistical distribution function of the two-point phase correlation.
Comparison to a stochastic model allows to measure the coupling strength and
temperature and hence a full characterization of the system
Stochastic optimization of a cold atom experiment using a genetic algorithm
We employ an evolutionary algorithm to automatically optimize different
stages of a cold atom experiment without human intervention. This approach
closes the loop between computer based experimental control systems and
automatic real time analysis and can be applied to a wide range of experimental
situations. The genetic algorithm quickly and reliably converges to the most
performing parameter set independent of the starting population. Especially in
many-dimensional or connected parameter spaces the automatic optimization
outperforms a manual search.Comment: 4 pages, 3 figure
The Molecular Gas Environment around Two Herbig Ae/Be Stars: Resolving the Outflows of LkHa 198 and LkHa 225S
Observations of outflows associated with pre-main-sequence stars reveal
details about morphology, binarity and evolutionary states of young stellar
objects. We present molecular line data from the Berkeley-Illinois-Maryland
Association array and Five Colleges Radio Astronomical Observatory toward the
regions containing the Herbig Ae/Be stars LkHa 198 and LkHa 225S. Single dish
observations of 12CO 1-0, 13CO 1-0, N2H+ 1-0 and CS 2-1 were made over a field
of 4.3' x 4.3' for each species. 12CO data from FCRAO were combined with high
resolution BIMA array data to achieve a naturally-weighted synthesized beam of
6.75'' x 5.5'' toward LkHa 198 and 5.7'' x 3.95'' toward LkHa 225S,
representing resolution improvements of factors of approximately 10 and 5 over
existing data. By using uniform weighting, we achieved another factor of two
improvement. The outflow around LkHa 198 resolves into at least four outflows,
none of which are centered on LkHa 198-IR, but even at our resolution, we
cannot exclude the possibility of an outflow associated with this source. In
the LkHa 225S region, we find evidence for two outflows associated with LkHa
225S itself and a third outflow is likely driven by this source. Identification
of the driving sources is still resolution-limited and is also complicated by
the presence of three clouds along the line of sight toward the Cygnus
molecular cloud. 13CO is present in the environments of both stars along with
cold, dense gas as traced by CS and (in LkHa 225S) N2H+. No 2.6 mm continuum is
detected in either region in relatively shallow maps compared to existing
continuum observations.Comment: 14 pages, 10 figures (5 color), accepted for publication in Ap
Single-particle-sensitive imaging of freely propagating ultracold atoms
We present a novel imaging system for ultracold quantum gases in expansion.
After release from a confining potential, atoms fall through a sheet of
resonant excitation laser light and the emitted fluorescence photons are imaged
onto an amplified CCD camera using a high numerical aperture optical system.
The imaging system reaches an extraordinary dynamic range, not attainable with
conventional absorption imaging. We demonstrate single-atom detection for
dilute atomic clouds with high efficiency where at the same time dense
Bose-Einstein condensates can be imaged without saturation or distortion. The
spatial resolution can reach the sampling limit as given by the 8 \mu m pixel
size in object space. Pulsed operation of the detector allows for slice images,
a first step toward a 3D tomography of the measured object. The scheme can
easily be implemented for any atomic species and all optical components are
situated outside the vacuum system. As a first application we perform
thermometry on rubidium Bose-Einstein condensates created on an atom chip.Comment: 24 pages, 10 figures. v2: as publishe
Parsec-scale dust distributions in Seyfert galaxies - Results of the MIDI AGN snapshot survey
The emission of warm dust dominates the mid-infrared spectra of active
galactic nuclei (AGN). Only interferometric observations provide the necessary
angular resolution to resolve the nuclear dust and to study its distribution
and properties. The investigation of dust in AGN cores is hence one of the main
science goals for the MID-infrared Interferometric instrument MIDI at the VLTI.
As the first step, the feasibility of AGN observations was verified and the
most promising sources for detailed studies were identified. This was carried
out in a "snapshot survey" with MIDI using Guaranteed Time Observations. In the
survey, observations were attempted for 13 of the brightest AGN in the
mid-infrared which are visible from Paranal. The results of the three
brightest, best studied sources have been published in separate papers. Here we
present the interferometric observations for the remaining 10, fainter AGN. For
8 of these, interferometric measurements could be carried out. Size estimates
or limits on the spatial extent of the AGN-heated dust were derived from the
interferometric data of 7 AGN. These indicate that the dust distributions are
compact, with sizes on the order of a few parsec. The derived sizes roughly
scale with the square root of the luminosity in the mid-infrared, s ~ sqrt(L),
with no clear distinction between type 1 and type 2 objects. This is in
agreement with a model of nearly optically thick dust structures heated to T ~
300 K. For three sources, the 10 micron feature due to silicates is tentatively
detected either in emission or in absorption. Based on the results for all AGN
studied with MIDI so far, we conclude that in the mid-infrared the differences
between individual galactic nuclei are greater than the generic differences
between type 1 and type 2 objects.Comment: 18 pages, 8 figures, updated to version published in A&A 502, 67-8
Super Earth Explorer: A Coronagraphic Off-Axis Space Telescope
The Super-Earth Explorer is an Off-Axis Space Telescope (SEE-COAST) designed
for high contrast imaging. Its scientific objective is to make the
physico-chemical characterization of exoplanets possibly down to 2 Earth radii
>. For that purpose it will analyze the spectral and polarimetric properties of
the parent starlight reflected by the planets, in the wavelength range 400-1250
nmComment: Accepted in Experimental Astronom
Resolving the complex structure of the dust torus in the active nucleus of the Circinus galaxy
To test the dust torus model for active galactic nuclei directly, we study
the extent and morphology of the nuclear dust distribution in the Circinus
galaxy using high resolution interferometric observations in the mid-infrared
with the MIDI instrument at the Very Large Telescope Interferometer. We find
that the dust distribution in the nucleus of Circinus can be explained by two
components, a dense and warm disk-like component of 0.4 pc size and a slightly
cooler, geometrically thick torus component with a size of 2.0 pc. The disk
component is oriented perpendicular to the ionisation cone and outflow and
seems to show the silicate feature at 10 micron in emission. It coincides with
a nuclear maser disk in orientation and size. From the energy needed to heat
the dust, we infer a luminosity of the accretion disk corresponding to 20% of
the Eddington luminosity of the nuclear black hole. We find that the
interferometric data are inconsistent with a simple, smooth and axisymmetric
dust emission. The irregular behaviour of the visibilities and the shallow
decrease of the dust temperature with radius provide strong evidence for a
clumpy or filamentary dust structure. We see no evidence for dust reprocessing,
as the silicate absorption profile is consistent with that of standard galactic
dust. We argue that the collimation of the ionising radiation must originate in
the geometrically thick torus component. Our findings confirm the presence of a
geometrically thick, torus-like dust distribution in the nucleus of Circinus,
as required in unified schemes of Seyfert galaxies. Several aspects of our data
require that this torus is irregular, or "clumpy".Comment: 20 pages, 16 figures, accepted for publication by A&
- …
