90 research outputs found
Ecological divergence of Chaetopteryx rugulosa species complex (Insecta, Trichoptera) linked to climatic niche diversification
Climate is often considered to be an important, but indirect driver of speciation. Indeed, environmental factors may contribute to the formation of biodiversity, but to date this crucial relationship remains largely unexplored. Here we investigate the possible role of climate, geological factors, and biogeographical processes in the formation of a freshwater insect species group, the Chaetopteryx rugulosa species complex (Trichoptera) in the Western Balkans. We used multi-locus DNA sequence data to establish a dated phylogenetic hypothesis for the group. The comparison of the dated phylogeny with the geological history of the Western Balkans shows that lineage formation coincided with major past Earth surface and climatic events in the region. By reconstructing present-day habitat conditions (climate, bedrock geology), we show that the lineages of C. rugulosa species complex have distinct climatic but not bedrock geological niches. Without exception, all splits associated with Pliocene/Pleistocene transition led to independent, parallel split into ‘warm’ and ‘cold’ sister lineages. This indicates a non-random diversification on the C. rugulosa species complex associated with late Pliocene climate in the region. We interpreted the results as the diversification of the species complex were mainly driven by ecological diversification linked to past climate change, along with geographical isolation
Differential Gene Expression from Microarray Analysis Distinguishes Woven and Lamellar Bone Formation in the Rat Ulna following Mechanical Loading
Formation of woven and lamellar bone in the adult skeleton can be induced through mechanical loading. Although much is known about the morphological appearance and structural properties of the newly formed bone, the molecular responses to loading are still not well understood. The objective of our study was to use a microarray to distinguish the molecular responses between woven and lamellar bone formation induced through mechanical loading. Rat forelimb loading was completed in a single bout to induce the formation of woven bone (WBF loading) or lamellar bone (LBF loading). A set of normal (non-loaded) rats were used as controls. Microarrays were performed at three timepoints after loading: 1 hr, 1 day and 3 days. Confirmation of microarray results was done for a select group of genes using quantitative real-time PCR (qRT-PCR). The micorarray identified numerous genes and pathways that were differentially regulated for woven, but not lamellar bone formation. Few changes in gene expression were evident comparing lamellar bone formation to normal controls. A total of 395 genes were differentially expressed between formation of woven and lamellar bone 1 hr after loading, while 5883 and 5974 genes were differentially expressed on days 1 and 3, respectively. Results suggest that not only are the levels of expression different for each type of bone formation, but that distinct pathways are activated only for woven bone formation. A strong early inflammatory response preceded an increase in angiogenic and osteogenic gene expression for woven bone formation. Furthermore, at later timepoints there was evidence of bone resorption after WBF loading. In summary, the vast coverage of the microarray offers a comprehensive characterization of the early differences in expression between woven and lamellar bone formation
Ablation of the Pro-Apoptotic Protein Bax Protects Mice from Glucocorticoid-Induced Bone Growth Impairment
Dexamethasone (Dexa) is a widely used glucocorticoid to treat inflammatory diseases; however, a multitude of undesired effects have been reported to arise from this treatment including osteoporosis, obesity, and in children decreased longitudinal bone growth. We and others have previously shown that glucocorticoids induce apoptosis in growth plate chondrocytes. Here, we hypothesized that Bax, a pro-apoptotic member of the Bcl-2 family, plays a key role in Dexa-induced chondrocyte apoptosis and bone growth impairment. Indeed, experiments in the human HCS-2/8 chondrocytic cell line demonstrated that silencing of Bax expression using small-interfering (si) RNA efficiently blocked Dexa-induced apoptosis. Furthermore, ablation of Bax in female mice protected against Dexa-induced bone growth impairment. Finally, Bax activation by Dexa was confirmed in human growth plate cartilage specimens cultured ex vivo. Our findings could therefore open the door for new therapeutic approaches to prevent glucocorticoid-induced bone growth impairment through specific targeting of Bax
Transcriptional Analysis of Fracture Healing and the Induction of Embryonic Stem Cell–Related Genes
Fractures are among the most common human traumas. Fracture healing represents a unique temporarily definable post-natal process in which to study the complex interactions of multiple molecular events that regulate endochondral skeletal tissue formation. Because of the regenerative nature of fracture healing, it is hypothesized that large numbers of post-natal stem cells are recruited and contribute to formation of the multiple cell lineages that contribute to this process. Bayesian modeling was used to generate the temporal profiles of the transcriptome during fracture healing. The temporal relationships between ontologies that are associated with various biologic, metabolic, and regulatory pathways were identified and related to developmental processes associated with skeletogenesis, vasculogenesis, and neurogenesis. The complement of all the expressed BMPs, Wnts, FGFs, and their receptors were related to the subsets of transcription factors that were concurrently expressed during fracture healing. We further defined during fracture healing the temporal patterns of expression for 174 of the 193 genes known to be associated with human genetic skeletal disorders. In order to identify the common regulatory features that might be present in stem cells that are recruited during fracture healing to other types of stem cells, we queried the transcriptome of fracture healing against that seen in embryonic stem cells (ESCs) and mesenchymal stem cells (MSCs). Approximately 300 known genes that are preferentially expressed in ESCs and ∼350 of the known genes that are preferentially expressed in MSCs showed induction during fracture healing. Nanog, one of the central epigenetic regulators associated with ESC stem cell maintenance, was shown to be associated in multiple forms or bone repair as well as MSC differentiation. In summary, these data present the first temporal analysis of the transcriptome of an endochondral bone formation process that takes place during fracture healing. They show that neurogenesis as well as vasculogenesis are predominant components of skeletal tissue formation and suggest common pathways are shared between post-natal stem cells and those seen in ESCs
Acidic preparations of lysed platelets upregulate proliferative pathways in osteoblast-like cells as demonstrated by genome-wide microarray analysis
Acoustic emission detection in concrete specimens: Experimental analysis and lattice model simulations
In civil engineering, a quantitative evaluation of damage in materials subjected to stress or strain states is
of great importance due to the critical character of these phenomena, which may suddenly give rise to
catastrophic failure. From an experimental point of view, an effective damage assessment criterion is
provided by the statistical analysis of the amplitude distribution of the acoustic emission signals generated
by growing microcracks. A classical way to work out the amplitude of acoustic emission signals distribution
is the Gutenberg-Richter law, characterized by the b-value parameter, which systematically decreases
with damage growth. The damage process is also characterized by a progressive localization that can be
modeled through the fractal dimension 2b1⁄4D of the damaged domain. In the framework of continuum
damage mechanics, the progressive deterioration of the material that causes formation of macro-cracks is
described by means of phenomenological damage variables usually introduced in classical constitutive
relationships. Nevertheless, taking into account discrete damage mechanics, lattice models are particularly
suitable to reproduce the generation of acoustic emission events, arising from the materials, during the
different stages of damage growth. These models are also fundamental for the application of advanced
statistical methods and non-standard mathematical methods, e.g. fractal theory. Starting from these considerations,
in this work a b-value analysis was conducted in laboratory on two concrete specimens
loaded up to failure. One was a prismatic specimen subjected to uniaxial compressive loading and the
other was a pre-cracked beam subjected to a three-point bending test. The truss-like discrete element
method was used to perform numerical simulations of the testing processes. The test results and the
results of the numerical analyses, in terms of load vs. time diagram and acoustic emission data, as
determined through b-value and signal frequency variations, are compared and are seen to be in good
agreement
Were changes in stress state responsible for the 2019 Ridgecrest, California, earthquakes?
- …
