1,495 research outputs found
Equivalent efficiency of a simulated photon-number detector
Homodyne detection is considered as a way to improve the efficiency of
communication near the single-photon level. The current lack of commercially
available {\it infrared} photon-number detectors significantly reduces the
mutual information accessible in such a communication channel. We consider
simulating direct detection via homodyne detection. We find that our particular
simulated direct detection strategy could provide limited improvement in the
classical information transfer. However, we argue that homodyne detectors (and
a polynomial number of linear optical elements) cannot simulate photocounters
arbitrarily well, since otherwise the exponential gap between quantum and
classical computers would vanish.Comment: 4 pages, 4 figure
Quantum Measurement and the Aharonov-Bohm Effect with Superposed Magnetic Fluxes
We consider the magnetic flux in a quantum mechanical superposition of two
values and find that the Aharonov-Bohm effect interference pattern contains
information about the nature of the superposition, allowing information about
the state of the flux to be extracted without disturbance. The information is
obtained without transfer of energy or momentum and by accumulated nonlocal
interactions of the vector potential with many charged particles
forming the interference pattern, rather than with a single particle. We
suggest an experimental test using already experimentally realized superposed
currents in a superconducting ring and discuss broader implications.Comment: 6 pages, 4 figures; Changes from version 3: corrected typo (not
present in versions 1 and 2) in Eq. 8; Changes from version 2: shortened
abstract; added refs and material in Section IV. The final publication is
available at: http://link.springer.com/article/10.1007/s11128-013-0652-
Hamiltonian Dynamics and the Phase Transition of the XY Model
A Hamiltonian dynamics is defined for the XY model by adding a kinetic energy
term. Thermodynamical properties (total energy, magnetization, vorticity)
derived from microcanonical simulations of this model are found to be in
agreement with canonical Monte-Carlo results in the explored temperature
region. The behavior of the magnetization and the energy as functions of the
temperature are thoroughly investigated, taking into account finite size
effects. By representing the spin field as a superposition of random phased
waves, we derive a nonlinear dispersion relation whose solutions allow the
computation of thermodynamical quantities, which agree quantitatively with
those obtained in numerical experiments, up to temperatures close to the
transition. At low temperatures the propagation of phonons is the dominant
phenomenon, while above the phase transition the system splits into ordered
domains separated by interfaces populated by topological defects. In the high
temperature phase, spins rotate, and an analogy with an Ising-like system can
be established, leading to a theoretical prediction of the critical temperature
.Comment: 10 figures, Revte
Continuous Variable Quantum Cryptography using Two-Way Quantum Communication
Quantum cryptography has been recently extended to continuous variable
systems, e.g., the bosonic modes of the electromagnetic field. In particular,
several cryptographic protocols have been proposed and experimentally
implemented using bosonic modes with Gaussian statistics. Such protocols have
shown the possibility of reaching very high secret-key rates, even in the
presence of strong losses in the quantum communication channel. Despite this
robustness to loss, their security can be affected by more general attacks
where extra Gaussian noise is introduced by the eavesdropper. In this general
scenario we show a "hardware solution" for enhancing the security thresholds of
these protocols. This is possible by extending them to a two-way quantum
communication where subsequent uses of the quantum channel are suitably
combined. In the resulting two-way schemes, one of the honest parties assists
the secret encoding of the other with the chance of a non-trivial superadditive
enhancement of the security thresholds. Such results enable the extension of
quantum cryptography to more complex quantum communications.Comment: 12 pages, 7 figures, REVTe
Hydration, drinking and exercise performance
To counter progressive dehydration and thirst, athletes drink during exercise. However, despite decades of scientific research, there is still no conclusive answer regarding how much we should drink to optimize performance. The goal of this review article is to analyze the arguments underpinning
contrasting perspectives and to critically analyze the available evidence. It seems that the respective argumentations of contrasting viewpoints are based on a different selective fraction of the available evidence. In studies using time trial performance protocols in which dehydration develops during exercise, it seems that end-exercise dehydration levels of up to 4% body mass do not compromise endurance performance in temperate to hot conditions – at least as long as the athlete is not
prevented from drinking. In contrast, studies that induced dehydration pre-exercise consistently report performance impacts already at low levels of dehydration, i.e., 1 to 2 % body mass loss.
Further factors like the perception of thirst have been suggested to influence performance, but performance effects cannot be explained solely by the perception of thirst as well. Nevertheless, no evidence was found against the hypothesis that drinking ad libitum may optimize performance outcomes. At the same time, arguments have been identified regarding why a drinking plan might assist athletes in different situations
Src Dependent Pancreatic Acinar Injury Can Be Initiated Independent of an Increase in Cytosolic Calcium
Several deleterious intra-acinar phenomena are simultaneously triggered on initiating acute pancreatitis. These culminate in acinar injury or inflammatory mediator generation in vitro and parenchymal damage in vivo. Supraphysiologic caerulein is one such initiator which simultaneously activates numerous signaling pathways including non-receptor tyrosine kinases such as of the Src family. It also causes a sustained increase in cytosolic calcium- a player thought to be crucial in regulating deleterious phenomena. We have shown Src to be involved in caerulein induced actin remodeling, and caerulein induced changes in the Golgi and post-Golgi trafficking to be involved in trypsinogen activation, which initiates acinar cell injury. However, it remains unclear whether an increase in cytosolic calcium is necessary to initiate acinar injury or if injury can be initiated at basal cytosolic calcium levels by an alternate pathway. To study the interplay between tyrosine kinase signaling and calcium, we treated mouse pancreatic acinar cells with the tyrosine phosphatase inhibitor pervanadate. We studied the effect of the clinically used Src inhibitor Dasatinib (BMS-354825) on pervanadate or caerulein induced changes in Src activation, trypsinogen activation, cell injury, upstream cytosolic calcium, actin and Golgi morphology. Pervanadate, like supraphysiologic caerulein, induced Src activation, redistribution of the F-actin from its normal location in the sub-apical area to the basolateral areas, and caused antegrade fragmentation of the Golgi. These changes, like those induced by supraphysiologic caerulein, were associated with trypsinogen activation and acinar injury, all of which were prevented by Dasatinib. Interestingly, however, pervanadate did not cause an increase in cytosolic calcium, and the caerulein induced increase in cytosolic calcium was not affected by Dasatinib. These findings suggest that intra-acinar deleterious phenomena may be initiated independent of an increase in cytosolic calcium. Other players resulting in acinar injury along with the Src family of tyrosine kinases remain to be explored. © 2013 Mishra et al
Scheme dependence of NLO corrections to exclusive processes
We apply the so-called conformal subtraction scheme to predict perturbatively
exclusive processes beyond leading order. Taking into account evolution
effects, we study the scheme dependence for the photon-to-pion transition form
factor and the electromagnetic pion form factor at next-to-leading order for
different pion distribution amplitudes. Relying on the conformally covariant
operator product expansion and using the known higher order results for
polarized deep inelastic scattering, we are able to predict perturbative
corrections to the hard-scattering amplitude of the photon-to-pion transition
form factor beyond next-to-leading order in the conformal scheme restricted to
the conformal limit of the theory.Comment: RevTeX, 25 pages, 2 figures, 5 tables, minor changes, to be published
in Phys. Rev.
Evidence for the Rare Decay B -> K*ll and Measurement of the B -> Kll Branching Fraction
We present evidence for the flavor-changing neutral current decay and a measurement of the branching fraction for the related
process , where is either an or
pair. These decays are highly suppressed in the Standard Model,
and they are sensitive to contributions from new particles in the intermediate
state. The data sample comprises
decays collected with the Babar detector at the PEP-II storage ring.
Averaging over isospin and lepton flavor, we obtain the branching
fractions and , where the
uncertainties are statistical and systematic, respectively. The significance of
the signal is over , while for it is .Comment: 7 pages, 2 postscript figues, submitted to Phys. Rev. Let
Perceived stressors of climate vulnerability across scales in the Savannah zone of Ghana: a participatory approach
Smallholder farmers in sub-Saharan Africa are confronted with climatic and non-climatic stressors. Research attention has focused on climatic stressors, such as rainfall variability, with few empirical studies exploring non-climatic stressors and how these interact with climatic stressors at multiple scales to affect food security and livelihoods. This focus on climatic factors restricts understanding of the combinations of stressors that exacerbate the vulnerability of farming households and hampers the development of holistic climate change adaptation policies. This study addresses this particular research gap by adopting a multi-scale approach to understand how climatic and non-climatic stressors vary, and interact, across three spatial scales (household, community and district levels) to influence livelihood vulnerability of smallholder farming households in the Savannah zone of northern Ghana. This study across three case study villages utilises a series of participatory tools including semi-structured interviews, key informant interviews and focus group discussions. The incidence, importance, severity and overall risk indices for stressors are calculated at the household, community, and district levels. Results show that climatic and non-climatic stressors were perceived differently; yet, there were a number of common stressors including lack of money, high cost of farm inputs, erratic rainfall, cattle destruction of crops, limited access to markets and lack of agricultural equipment that crossed all scales. Results indicate that the gender of respondents influenced the perception and severity assessment of stressors on rural livelihoods at the community level. Findings suggest a mismatch between local and district level priorities that have implications for policy and development of agricultural and related livelihoods in rural communities. Ghana’s climate change adaptation policies need to take a more holistic approach that integrates both climatic and non-climatic factors to ensure policy coherence between national climate adaptation plans and District development plans
Physical activity, smoking, and genetic predisposition to obesity in people from Pakistan:the PROMIS study
Background: Multiple genetic variants have been reliably associated with obesity-related traits in Europeans, but little is known about their associations and interactions with lifestyle factors in South Asians. Methods: In 16,157 Pakistani adults (8232 controls; 7925 diagnosed with myocardial infarction [MI]) enrolled in the PROMIS Study, we tested whether: a) BMI-associated loci, individually or in aggregate (as a genetic risk score - GRS), are associated with BMI; b) physical activity and smoking modify the association of these loci with BMI. Analyses were adjusted for age, age(2), sex, MI (yes/no), and population substructure. Results: Of 95 SNPs studied here, 73 showed directionally consistent effects on BMI as reported in Europeans. Each additional BMI-raising allele of the GRS was associated with 0.04 (SE = 0.01) kg/m(2) higher BMI (P = 4.5 x 10(-14)). We observed nominal evidence of interactions of CLIP1 rs11583200 (P-interaction = 0.014), CADM2 rs13078960 (P-interaction = 0.037) and GALNT10 rs7715256 (P-interaction = 0.048) with physical activity, and PTBP2 rs11165643 (P-interaction = 0.045), HIP1 rs1167827 (P-interaction = 0.015), C6orf106 rs205262 (P-interaction = 0.032) and GRID1 rs7899106 (P-interaction = 0.043) with smoking on BMI. Conclusions: Most BMI-associated loci have directionally consistent effects on BMI in Pakistanis and Europeans. There were suggestive interactions of established BMI-related SNPs with smoking or physical activity
- …
