40 research outputs found

    IκBα polymorphism at promoter region (rs2233408) influences the susceptibility of gastric cancer in Chinese

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nuclear factor of kappa B inhibitor alpha (IκBα) protein is implicated in regulating a variety of cellular process from inflammation to tumorigenesis. The objective of this study was to investigate the susceptibility of rs2233408 T/C genotype in the promoter region of <it>IκBα </it>to gastric cancer and the association of this polymorphism with clinicopathologic variables in gastric cancer patients.</p> <p>Methods</p> <p>A population-based case-control study was conducted between 1999 and 2006 in Guangdong Province, China. A total of 564 gastric cancer patients and 566 healthy controls were enrolled in this study. rs2233408 genotypes in <it>IκBα </it>were analyzed by TaqMan SNP genotyping assay.</p> <p>Results</p> <p>Both rs2233408 T homozygote (TT) and T heterozygotes (TC and TT) had significantly reduced gastric cancer risk (TT: OR = 0.250, 95% CI = 0.069-0.909, <it>P </it>= 0.035; TC and TT: OR = 0.721, 95% CI = 0.530-0.981, <it>P </it>= 0.037), compared with rs2233408 C homozygote (CC). rs2233408 T heterozygotes were significantly associated with reduced risk of intestinal-type gastric cancer with ORs of 0.648 (95% CI = 0.459-0.916, <it>P </it>= 0.014), but not with the diffuse or mix type of gastric cancer. The association between rs2233408 T heterozygotes and gastric cancer appeared more apparent in the older patients (age>40) (OR = 0.674, 95% CI = 0.484-0.939, <it>P </it>= 0.02). rs2233408 T heterozygotes was associated with non-cardiac gastric cancer (OR = 0.594, 95% CI = 0.411-0.859, <it>P </it>= 0.006), but not with cardiac gastric cancer. However, rs2233408 polymorphism was not associated with the prognosis of gastric cancer patients.</p> <p>Conclusions</p> <p><it>IκBα </it>rs2233408 T heterozygotes were associated with reduced risk of gastric cancer, especially for the development of certain subtypes of gastric cancer in Chinese population.</p

    Benign mammary epithelial cells enhance the transformed phenotype of human breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent research has yielded a wealth of data underscoring the key role of the cancer microenvironment, especially immune and stromal cells, in the progression of cancer and the development of metastases. However, the role of adjacent benign epithelial cells, which provide initial cell-cell contacts with cancer cells, in tumor progression has not been thoroughly examined. In this report we addressed the question whether benign MECs alter the transformed phenotype of human breast cancer cells.</p> <p>Methods</p> <p>We used both <it>in vitro </it>and <it>in vivo </it>co-cultivation approaches, whereby we mixed GFP-tagged MCF-10A cells (G2B-10A), as a model of benign mammary epithelial cells (MECs), and RFP-tagged MDA-MB-231-TIAS cells (R2-T1AS), as a model of breast cancer cells.</p> <p>Results</p> <p>The <it>in vitro </it>studies showed that G2B-10A cells increase the colony formation of R2-T1AS cells in both soft agar and clonogenicity assays. Conditioned media derived from G2B-10A cells enhanced colony formation of R2-T1AS cells, whereas prior paraformaldehyde (PFA) fixation of G2B-10A cells abrogated this enhancement effect. Moreover, two other models of benign MECs, MCF-12A and HuMECs, also enhanced R2-T1AS colony growth in soft agar and clonogenicity assays. These data reveal that factors secreted by benign MECs are responsible for the observed enhancement of the R2-T1AS transformed phenotype. To determine whether G2B-10A cells enhance the tumorigenic growth of co-injected R2-T1AS cells <it>in vivo</it>, we used the nude mouse xenograft assay. Co-injecting R2-T1AS cells with G2B-10A cells ± PFA-fixation, revealed that G2B-10A cells promoted a ~3-fold increase in tumor growth, irrespective of PFA pre-treatment. These results indicate that soluble factors secreted by G2B-10A cells play a less important role in promoting R2-T1AS tumorigenesis <it>in vivo</it>, and that additional components are operative in the nude mouse xenograft assay. Finally, using array analysis, we found that both live and PFA-fixed G2B-10A cells induced R2-T1AS cells to secrete specific cytokines (IL-6 and GM-CSF), suggesting that cell-cell contact activates R2-T1AS cells.</p> <p>Conclusions</p> <p>Taken together, these data shift our understanding of adjacent benign epithelial cells in the cancer process, from passive, noncontributory cells to an active and tumor-promoting vicinal cell population that may have significant effects early, when benign cells outnumber malignant cells.</p

    The Wnt-dependent signaling pathways as target in oncology drug discovery

    Get PDF
    Our current understanding of the Wnt-dependent signaling pathways is mainly based on studies performed in a number of model organisms including, Xenopus, Drosophila melanogaster, Caenorhabditis elegans and mammals. These studies clearly indicate that the Wnt-dependent signaling pathways are conserved through evolution and control many events during embryonic development. Wnt pathways have been shown to regulate cell proliferation, morphology, motility as well as cell fate. The increasing interest of the scientific community, over the last decade, in the Wnt-dependent signaling pathways is supported by the documented importance of these pathways in a broad range of physiological conditions and disease states. For instance, it has been shown that inappropriate regulation and activation of these pathways is associated with several pathological disorders including cancer, retinopathy, tetra-amelia and bone and cartilage disease such as arthritis. In addition, several components of the Wnt-dependent signaling pathways appear to play important roles in diseases such as Alzheimer’s disease, schizophrenia, bipolar disorder and in the emerging field of stem cell research. In this review, we wish to present a focused overview of the function of the Wnt-dependent signaling pathways and their role in oncogenesis and cancer development. We also want to provide information on a selection of potential drug targets within these pathways for oncology drug discovery, and summarize current data on approaches, including the development of small-molecule inhibitors, that have shown relevant effects on the Wnt-dependent signaling pathways

    A self-renewal assay for cancer stem cells

    Full text link
    Cancers of epithelial origin are responsible for the majority of cancer-related deaths in the USA. Unfortunately, although chemotherapy and/or radiation therapy can sometimes shrink tumors, metastatic cancers of epithelial origin are essentially incurable. It is clear that new approaches are needed to treat these diseases. Although cancer cell lines provide invaluable information, their biological properties often differ in crucial ways from de novo cancer cells. Our laboratory has developed a novel mouse model that reliably permits individual cancer cells isolated directly from patients’ tumors to be assayed. This will allow the characterization of crucial signaling pathways involved in processes such as self-renewal that are critical for tumor formation by the cancer cells within de novo tumors. These tools should lead to new insights into the cellular and molecular mechanisms that drive human breast cancer growth and invasion.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46932/1/280_2005_Article_97.pd

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Evaluation of prognostic risk models for postoperative pulmonary complications in adult patients undergoing major abdominal surgery: a systematic review and international external validation cohort study

    Get PDF
    Background Stratifying risk of postoperative pulmonary complications after major abdominal surgery allows clinicians to modify risk through targeted interventions and enhanced monitoring. In this study, we aimed to identify and validate prognostic models against a new consensus definition of postoperative pulmonary complications. Methods We did a systematic review and international external validation cohort study. The systematic review was done in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched MEDLINE and Embase on March 1, 2020, for articles published in English that reported on risk prediction models for postoperative pulmonary complications following abdominal surgery. External validation of existing models was done within a prospective international cohort study of adult patients (≥18 years) undergoing major abdominal surgery. Data were collected between Jan 1, 2019, and April 30, 2019, in the UK, Ireland, and Australia. Discriminative ability and prognostic accuracy summary statistics were compared between models for the 30-day postoperative pulmonary complication rate as defined by the Standardised Endpoints in Perioperative Medicine Core Outcome Measures in Perioperative and Anaesthetic Care (StEP-COMPAC). Model performance was compared using the area under the receiver operating characteristic curve (AUROCC). Findings In total, we identified 2903 records from our literature search; of which, 2514 (86·6%) unique records were screened, 121 (4·8%) of 2514 full texts were assessed for eligibility, and 29 unique prognostic models were identified. Nine (31·0%) of 29 models had score development reported only, 19 (65·5%) had undergone internal validation, and only four (13·8%) had been externally validated. Data to validate six eligible models were collected in the international external validation cohort study. Data from 11 591 patients were available, with an overall postoperative pulmonary complication rate of 7·8% (n=903). None of the six models showed good discrimination (defined as AUROCC ≥0·70) for identifying postoperative pulmonary complications, with the Assess Respiratory Risk in Surgical Patients in Catalonia score showing the best discrimination (AUROCC 0·700 [95% CI 0·683–0·717]). Interpretation In the pre-COVID-19 pandemic data, variability in the risk of pulmonary complications (StEP-COMPAC definition) following major abdominal surgery was poorly described by existing prognostication tools. To improve surgical safety during the COVID-19 pandemic recovery and beyond, novel risk stratification tools are required. Funding British Journal of Surgery Society

    Structure and Stability of Higher-Order Human Telomeric Quadruplexes

    No full text
    G-quadruplex formation in the sequences 5’-(TTAGGG)n and 5’(TTAGGG)nTT (n=4,8,12) was studies using circular dichroism, sedimentation velocity, differential scanning calorimetry and molecular dynamics simulations. Sequences containing 8 and 12 repeats formed higher-order structures with two and three contiguous quadruplexes, respectively. The most plausible structures for these sequences were determined by molecular dynamics simulations followed by experimental testing of predicted hydrodynamic properties by sedimentation velocity. The most plausible structures featured folding of the strand into contiguous quadruplexes with mixed hybrid conformations. Thermodynamic studies showed the strands folded spontaneous to contain the maximum number contiguous quadruplexes. For the sequence 5’(TTAGGG)12TT, more than 90% of the strands contained completely folded structures with three quadruplexes. Statistical mechanical-based deconvolution of thermograms for three quadrupruplex structures showed that each quadruplex melted independently with unique thermodynamic parmameters. Thermodynamic analysis revealed further that quadruplexes in higher-ordered structures were destabilized relative to their monomeric counterparts, with unfavorable coupling free energies. Quadruplex stability thus depends critically on the sequence and structural context

    Differential Scanning Calorimetry of Protein–Lipid Interactions

    No full text
    Differential scanning calorimetry (DSC) is a highly sensitive nonperturbing technique used for studying the thermodynamic properties of thermally induced transitions. Since these properties might be affected by ligand binding, DSC is particularly useful for the characterization of protein interactions with biomimetic membranes. The advantages of this technique over other methods consist in the direct measurement of intrinsic thermal properties of the samples, requiring no chemical modifications or extrinsic probes. This chapter describes the basic theory of DSC and provides the reader with an understanding of the capabilities of DSC instrumentation and the type of information that can be achieved from DSC studies of lipid-protein interactions. In particular, the chapter provides a detailed analysis of DSC data to assess the effects of proteins on biomimetic membranes
    corecore