3,178 research outputs found
Universal scaling at field-induced magnetic phase transitions
We study field-induced magnetic order in cubic lattices of dimers with
antiferromagnetic Heisenberg interactions. The thermal critical exponents at
the quantum phase transition from a spin liquid to a magnetically ordered phase
are determined from Stochastic Series Expansion Quantum Monte Carlo
simulations. These exponents are independent of the interdimer coupling ratios,
and converge to the value obtained by considering the transition as a
Bose-Einstein condensation of magnons, alpha_(BEC) = 1.5. The scaling results
are of direct relevance to the spin-dimer systems TlCuCl_3 and KCuCl_3, and
explain the broad range of exponents reported for field-induced ordering
transitions.Comment: 4 pages, 4 eps-figure
Semiclassical theory of spin-orbit interactions using spin coherent states
We formulate a semiclassical theory for systems with spin-orbit interactions.
Using spin coherent states, we start from the path integral in an extended
phase space, formulate the classical dynamics of the coupled orbital and spin
degrees of freedom, and calculate the ingredients of Gutzwiller's trace formula
for the density of states. For a two-dimensional quantum dot with a spin-orbit
interaction of Rashba type, we obtain satisfactory agreement with fully
quantum-mechanical calculations. The mode-conversion problem, which arose in an
earlier semiclassical approach, has hereby been overcome.Comment: LaTeX (RevTeX), 4 pages, 2 figures, accepted for Physical Review
Letters; final version (v2) for publication with minor editorial change
Semiclassical theory of spin-orbit interaction in the extended phase space
We consider the semiclassical theory in a joint phase space of spin and
orbital degrees of freedom. The method is developed from the path integrals
using the spin-coherent-state representation, and yields the trace formula for
the density of states. We discuss special cases, such as weak and strong
spin-orbit coupling, and relate the present theory to the earlier approaches.Comment: 36 pages, 8 figures. Version 2: revised Sec. 4.4 and Appendix B;
minor corrections elsewher
The First Detections of the Extragalactic Background Light at 3000, 5500, and 8000A (II): Measurement of Foreground Zodiacal Light
We present a measurement of the absolute surface brightness of the zodiacal
light (3900-5100A) toward a fixed extragalactic target at high ecliptic
latitude based on moderate resolution (~1.3A per pixel) spectrophotometry
obtained with the du Pont 2.5m telescope at Las Campanas Observatory in Chile.
This measurement and contemporaneous Hubble Space Telescope data from WFPC2 and
FOS comprise a coordinated program to measure the mean flux of the diffuse
extragalactic background light (EBL). The zodiacal light at optical wavelengths
results from scattering by interplanetary dust, so that the zodiacal light flux
toward any extragalactic target varies seasonally with the position of the
Earth. This measurement of zodiacal light is therefore relevant to the specific
observations (date and target field) under discussion. To obtain this result,
we have developed a technique that uses the strength of the zodiacal Fraunhofer
lines to identify the absolute flux of the zodiacal light in the
multiple-component night sky spectrum. Statistical uncertainties in the result
are 0.6% (1 sigma). However, the dominant source of uncertainty is systematic
errors, which we estimate to be 1.1% (1 sigma). We discuss the contributions
included in this estimate explicitly. The systematic errors in this result
contribute 25% in quadrature to the final error in our coordinated EBL
measurement, which is presented in the first paper of this series.Comment: Accepted for publication in ApJ, 22 pages using emulateapj.sty,
version with higher resolution figures available at
http://www.astro.lsa.umich.edu/~rab/publications.html or at
http://nedwww.ipac.caltech.edu/level5/Sep01/Bernstein2/frames.htm
Increasing condom use in heterosexual men: development of a theory-based interactive digital intervention
Increasing condom use to prevent sexually transmitted infections is a key public health goal. Interventions are more likely to be effective if they are theory- and evidence-based. The Behaviour Change Wheel (BCW) provides a framework for intervention development. To provide an example of how the BCW was used to develop an intervention to increase condom use in heterosexual men (the MenSS website), the steps of the BCW intervention development process were followed, incorporating evidence from the research literature and views of experts and the target population. Capability (e.g. knowledge) and motivation (e.g. beliefs about pleasure) were identified as important targets of the intervention. We devised ways to address each intervention target, including selecting interactive features and behaviour change techniques. The BCW provides a useful framework for integrating sources of evidence to inform intervention content and deciding which influences on behaviour to target
Field- and pressure-induced magnetic quantum phase transitions in TlCuCl_3
Thallium copper chloride is a quantum spin liquid of S = 1/2 Cu^2+ dimers.
Interdimer superexchange interactions give a three-dimensional magnon
dispersion and a spin gap significantly smaller than the dimer coupling. This
gap is closed by an applied hydrostatic pressure of approximately 2kbar or by a
magnetic field of 5.6T, offering a unique opportunity to explore the both types
of quantum phase transition and their associated critical phenomena. We use a
bond-operator formulation to obtain a continuous description of all disordered
and ordered phases, and thus of the transitions separating these. Both
pressure- and field-induced transitions may be considered as the Bose-Einstein
condensation of triplet magnon excitations, and the respective phases of
staggered magnetic order as linear combinations of dimer singlet and triplet
modes. We focus on the evolution with applied pressure and field of the
magnetic excitations in each phase, and in particular on the gapless
(Goldstone) modes in the ordered regimes which correspond to phase fluctuations
of the ordered moment. The bond-operator description yields a good account of
the magnetization curves and of magnon dispersion relations observed by
inelastic neutron scattering under applied fields, and a variety of
experimental predictions for pressure-dependent measurements.Comment: 20 pages, 17 figure
Magnetic field structure of relativistic jets without current sheets
We present an analytical class of equilibrium solutions for the structure of
relativistic sheared and rotating magnetized jets that contain no boundary
current sheets. We demonstrate the overall dynamical stability of these
solutions and, most importantly, a better numerical resistive stability than
the commonly employed force-free structures which inevitably require the
presence of dissipative surface currents. The jet is volumetrically confined by
the external pressure, with no pressure gradient on the surface. We calculate
the expected observed properties of such jets. Given the simplicity of these
solution we suggest them as useful initial conditions for relativistic jet
simulations.Comment: 13 pages, 13 figures, Accepted by MNRA
ICTV Virus Taxonomy Profile: Rhabdoviridae.
This is the final version of the article. Available from the publisher via the DOI in this record.The family Rhabdoviridae comprises viruses with negative-sense (-) single-stranded RNA genomes of 10.8-16.1 kb. Virions are typically enveloped with bullet-shaped or bacilliform morphology but can also be non-enveloped filaments. Rhabdoviruses infect plants and animals including mammals, birds, reptiles and fish, as well as arthropods which serve as single hosts or act as biological vectors for transmission to animals or plants. Rhabdoviruses include important pathogens of humans, livestock, fish and agricultural crops. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of Rhabdoviridae, which is available at www.ictv.global/report/rhabdoviridae.Production of this summary, the online chapter, and associated resources was funded by a grant from the Wellcome Trust (WT108418AIA)
QED3 theory of underdoped high temperature superconductors
Low-energy theory of d-wave quasiparticles coupled to fluctuating vortex
loops that describes the loss of phase coherence in a two dimensional d-wave
superconductor at T=0 is derived. The theory has the form of 2+1 dimensional
quantum electrodynamics (QED3), and is proposed as an effective description of
the T=0 superconductor-insulator transition in underdoped cuprates. The
coupling constant ("charge") in this theory is proportional to the dual order
parameter of the XY model, which is assumed to be describing the quantum
fluctuations of the phase of the superconducting order parameter. The principal
result is that the destruction of phase coherence in d-wave superconductors
typically, and immediately, leads to antiferromagnetism. The transition can be
understood in terms of the spontaneous breaking of an approximate "chiral"
SU(2) symmetry, which may be discerned at low enough energies in the standard
d-wave superconductor. The mechanism of the symmetry breaking is analogous to
the dynamical mass generation in the QED3, with the "mass" here being
proportional to staggered magnetization. Other insulating phases that break
chiral symmetry include the translationally invariant "d+ip" and "d+is"
insulators, and various one dimensional charge-density and spin-density waves.
The theory offers an explanation for the rounded d-wave-like dispersion seen in
ARPES experiments on Ca2CuO2Cl2 (F. Ronning et. al., Science 282, 2067 (1998)).Comment: Revtex, 20 pages, 5 figures; this is a much extended follow-up to the
Phys. Rev. Lett. vol.88, 047006 (2002) (cond-mat/0110188); improved
presentation, many additional explanations, comments, and references added,
sec. IV rewritten. Final version, to appear in Phys. Rev.
Angular Momentum and the Formation of Stars and Black Holes
The formation of compact objects like stars and black holes is strongly
constrained by the requirement that nearly all of the initial angular momentum
of the diffuse material from which they form must be removed or redistributed
during the formation process. The mechanisms that may be involved and their
implications are discussed for (1) low-mass stars, most of which probably form
in binary or multiple systems; (2) massive stars, which typically form in
clusters; and (3) supermassive black holes that form in galactic nuclei. It is
suggested that in all cases, gravitational interactions with other stars or
mass concentrations in a forming system play an important role in
redistributing angular momentum and thereby enabling the formation of a compact
object. If this is true, the formation of stars and black holes must be a more
complex, dynamic, and chaotic process than in standard models. The
gravitational interactions that redistribute angular momentum tend to couple
the mass of a forming object to the mass of the system, and this may have
important implications for mass ratios in binaries, the upper stellar IMF in
clusters, and the masses of supermassive black holes in galaxies.Comment: Accepted by Reports on Progress in Physic
- …
