890 research outputs found

    Need for outreach dental service in Chinese kindergarten children

    Get PDF
    IADR Oral Communication (III) - Parallel Session 7: Behavioural Science and Health Services ResearchJournal of Dental Research, 2003, v. 82 Spec. Iss. C, p. C-660, abstract no. VO-30published_or_final_versio

    Probing superconducting phase fluctuations from the current noise spectrum of pseudogaped metal-superconductor tunnel junctions

    Full text link
    We study the current noise spectra of a tunnel junction of a metal with strong pairing phase fluctuation and a superconductor. It is shown that there is a characteristic peak in the noise spectrum at the intrinsic Josephson frequency ωJ=2eV\omega_J=2eV when ωJ\omega_J is smaller than the pairing gap but larger than the pairing scattering rate. In the presence of an AC voltage, the tunnelling current noise shows a series of characteristic peaks with increasing DC voltage. Experimental observation of these peaks will give direct evidence of the pair fluctuation in the normal state of high-TcT_c superconductors and from the half width of the peaks the pair decay rate can be estimated.Comment: 4 pages, 3 figure

    Diquat Derivatives: Highly Active, Two-Dimensional Nonlinear Optical Chromophores with Potential Redox Switchability

    Get PDF
    In this article, we present a detailed study of structure−activity relationships in diquaternized 2,2′-bipyridyl (diquat) derivatives. Sixteen new chromophores have been synthesized, with variations in the amino electron donor substituents, π-conjugated bridge, and alkyl diquaternizing unit. Our aim is to combine very large, two-dimensional (2D) quadratic nonlinear optical (NLO) responses with reversible redox chemistry. The chromophores have been characterized as their PF_6^− salts by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Their visible absorption spectra are dominated by intense π → π^* intramolecular charge-transfer (ICT) bands, and all show two reversible diquat-based reductions. First hyperpolarizabilities β have been measured by using hyper-Rayleigh scattering with an 800 nm laser, and Stark spectroscopy of the ICT bands affords estimated static first hyperpolarizabilities β_0. The directly and indirectly derived β values are large and increase with the extent of π-conjugation and electron donor strength. Extending the quaternizing alkyl linkage always increases the ICT energy and decreases the E_(1/2) values for diquat reduction, but a compensating increase in the ICT intensity prevents significant decreases in Stark-based β_0 responses. Nine single-crystal X-ray structures have also been obtained. Time-dependent density functional theory clarifies the molecular electronic/optical properties, and finite field calculations agree with polarized HRS data in that the NLO responses of the disubstituted species are dominated by ‘off-diagonal’ β_(zyy) components. The most significant findings of these studies are: (i) β_0 values as much as 6 times that of the chromophore in the technologically important material (E)-4′-(dimethylamino)-N-methyl-4-stilbazolium tosylate; (ii) reversible electrochemistry that offers potential for redox-switching of optical properties over multiple states; (iii) strongly 2D NLO responses that may be exploited for novel practical applications; (iv) a new polar material, suitable for bulk NLO behavior

    Brain perfusion imaging with voxel-based analysis in secondary progressive multiple sclerosis patients with a moderate to severe stage of disease: a boon for the workforce

    Get PDF
    Background: The present study was carried out to evaluate cerebral perfusion in multiple sclerosis (MS) patients with a moderate to severe stage of disease. Some patients underwent hyperbaric oxygen therapy (HBOT) and brain perfusion between before and after that was compared. Methods: We retrospectively reviewed 25 secondary progressive (SP)-MS patients from the hospital database. Neurological disability evaluated by Expanded Disability Status Scale Score (EDSS). Brain perfusion was performed by (99 m) Tc-labeled bicisate (ECD) brain SPECT and the data were compared using statistical parametric mapping (SPM). In total, 16 patients underwent HBOT. Before HBOT and at the end of 20 sessions of oxygen treatment, 99mTc-ECD brain perfusion single photon emission computed tomography (SPECT) was performed again then the results were evaluated and compared. Brain perfusion was performed by (99 m) Tc-labeled bicisate (ECD) brain SPECT and the data were compared using statistical parametric mapping (SPM). Results: A total of 25 SP-MS patients, 14 females (56 %) and 11 males (44 %) with a mean age of 38.92 ± 11. 28 years included in the study. The mean disease duration was 8.70 ± 5.30 years. Of the 25 patients, 2 (8 %) had a normal SPECT and 23 (92 %) had abnormal brain perfusion SPECT studies. The study showed a significant association between severity of perfusion impairment with disease duration and also with EDSS (P <0.05). There was a significant improvement in pre- and post-treatment perfusion scans (P <0.05), but this did not demonstrate a significant improvement in the clinical subjective and objective evaluation of patients (P >0.05). Conclusions: This study depicted decreased cerebral perfusion in SP-MS patients with a moderate to severe disability score and its association with clinical parameters. Because of its accessibility, rather low price, practical ease, and being objective quantitative information, brain perfusion SPECT can be complementing to other diagnostic modalities such as MRI and clinical examinations in disease surveillance and monitoring. The literature on this important issue is extremely scarce, and follow up studies are required to assess these preliminary results

    Synaptic AMPA receptor composition in development, plasticity and disease

    Get PDF

    Data Visualization on Global Trends on Cancer Incidence An Application of IBM Watson Analytics

    Get PDF
    Visual analytics is widely used to explore data patterns and trends. This work leverages cancer data collected by World Health Organization (WHO) across over a hundred of cancer registries worldwide. In this study, we present a visual analytics platform, IBM Watson Analytics, to explore the patterns of global cancer incidence. We included 26 cancers from different geographic regions. An interactive interface was applied to plot a choropleth map to show global cancer distribution, and line charts to demonstrate historical cancer trends over 29 years. Subgroup analyses were conducted for different age groups. With real-time interactive features, we can easily explore the data with a selection of any cancer type, gender, age group, or geographical region. This platform is running on the cloud, so it can handle data in huge volumes, and is assessable by any computer connected to the Internet

    Stabilizing multiple topological fermions on a quantum computer

    Get PDF
    AbstractIn classical and single-particle settings, non-trivial band topology always gives rise to robust boundary modes. For quantum many-body systems, however, multiple topological fermions are not always able to coexist, since Pauli exclusion prevents additional fermions from occupying the limited number of available topological modes. In this work, we show, through IBM quantum computers, how one can robustly stabilize more fermions than the number of topological modes through specially designed 2-fermion interactions. Our demonstration hinges on the realization of BDI- and D-class topological Hamiltonians on transmon-based quantum hardware, and relied on a tensor network-aided circuit recompilation approach. We also achieved the full reconstruction of multiple-fermion topological band structures through iterative quantum phase estimation (IQPE). All in all, our work showcases how advances in quantum algorithm implementation enable noisy intermediate-scale quantum (NISQ) devices to be exploited for topological stabilization beyond the context of single-particle topological invariants.</jats:p

    Tidal surface states as fingerprints of non-Hermitian nodal knot metals

    Get PDF
    AbstractNon-Hermitian nodal knot metals (NKMs) contain intricate complex-valued energy bands which give rise to knotted exceptional loops and new topological surface states. We introduce a formalism that connects the algebraic, geometric, and topological aspects of these surface states with their parent knots. We also provide an optimized constructive ansatz for tight-binding models for non-Hermitian NKMs of arbitrary knot complexity and minimal hybridization range. Specifically, various representative non-Hermitian torus knots Hamiltonians are constructed in real-space, and their nodal topologies studied via winding numbers that avoid the explicit construction of generalized Brillouin zones. In particular, we identify the surface state boundaries as “tidal” intersections of the complex band structure in a marine landscape analogy. Beyond topological quantities based on Berry phases, we further find these tidal surface states to be intimately connected to the band vorticity and the layer structure of their dual Seifert surface, and as such provide a fingerprint for non-Hermitian NKMs.</jats:p

    Mechanisms and therapeutic applications of electromagnetic therapy in Parkinson's disease

    Get PDF
    © 2015 Vadalà et al. Electromagnetic therapy is a non-invasive and safe approach for the management of several pathological conditions including neurodegenerative diseases. Parkinson's disease is a neurodegenerative pathology caused by abnormal degeneration of dopaminergic neurons in the ventral tegmental area and substantia nigra pars compacta in the midbrain resulting in damage to the basal ganglia. Electromagnetic therapy has been extensively used in the clinical setting in the form of transcranial magnetic stimulation, repetitive transcranial magnetic stimulation, high-frequency transcranial magnetic stimulation and pulsed electromagnetic field therapy which can also be used in the domestic setting. In this review, we discuss the mechanisms and therapeutic applications of electromagnetic therapy to alleviate motor and non-motor deficits that characterize Parkinson's disease
    corecore